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~ Abstract— Tracking and observing multiple dynamic targets In this paper, we present a novel approach to this problem
is an important task in mobile sensor networks. This paper of sensor splitting/merging. In our approactseed growing
presents a novel approach to the problem of sensor split- graph partition (SGGP) algorithm is proposed to solve the

ting/merging for mobile sensor networks to track and observe "~ .
multiple targets in a dynamic fashion. In this approach, we problem of splitting/merging maneuvers. To demonstrate the

propose a seed growing graph partition (SGGP) algorithm to  benefit of the SGGP in term of total energy and time
solve the splitting/merging problem. Furthermore, during the  consumption when sensors split, we compare the SGGP

process of tracking, collision avoidance and velocity matching algorithm with a random selection (RS) algorithm.
among mobile sensors are guaranteed. To demonstrate the

benefit of the SGGP algorithm in term of the total energy B. Literature review
and time consumption when sensors split, we compare the . . . L . .
SGGP with a random selection (RS) algorithm. Numerical In this section, we review existing works in flocking
experimental tests validate our theoretical results. control and network partitioning which are related to our
_Keywords: Flocking control, Multiple targets tracking, Mo-  approach.
bile sensor network, Graph partitioning. Flocking control has been studied by many researchers.
. INTRODUCTION Wang and Gu [7] presented a survey of recent research
achievements in robot flocking. Their paper gave an overview
_ _ of the related basic knowledge of graph theory, potential
Sensor networks, especially mobile sensor networks [Hnction, network communication and system stability anal-
have been extensively studied in recent years. Mob|le sensflis. In [2], a theoretical framework for design and analy-
networks have several advantages over stationary SengQl of distributed flocking algorithms was proposed. These
networks such as the adaptation to environmental changggorithms solved the flocking control in the absence and
and reconfigurability for better sensing performance. A maigresence of obstacles. An extension of the flocking control
issue for multiple mobile sensors to track a moving target igigorithms in [2], flocking of agents with a virtual leader in
that these sensors have to move together without collisiqRe case of a minority of informed agents and in the case of
among them during tracking, which requires the use of cQzrying velocity of virtual leader, was presented in [4] and
operative control methods. Or_le o_f these methods is floc_klr[g]. Shi and Wang [6] investigated the dynamic properties
control [2]. We know that flocking is a phenomenon in whichy¢ mopile agents for the case where the state of the virtual
a number of mobile agents move together and interact wifRaqer is time varying and the topology of the neighboring
each other while ensuring no collision, velocity matching,g|ations between agents is dynamic. Taneeal. [8], [9]
and flock centering [3]. In nature, schools of fish, birds, antgy,gied the stability properties of a system of multiple mobile
and bees, etc. demonstrate the phenomena of flocking. Theants with double integrator dynamics in the case of fixed
problem of flocking has been studied for many years. It hag,q gynamic topologies. In addition, the experimental imple-
attracted many_researchers_ in ph_y3|cs, mathematics, biologyentation of flocking algorithms proposed in [8] and [9] on
and especially in control science in recent years [2], [4], [S}yheeled mobile robots was presented in [10]. Gervasi and
[61, 7], [8]’_ [, [1_0]' [11]. _ ) Prencipe [11] studied the distributed coordination and control
Another issue in a mobile sensor network is how to tracks 5 et of asynchronous, anonymous, memoryless mobile
multiple targets simultaneously in a dynamic fashion. Thigepicles in the case of no communication among the vehicles.
requires that some sensors should split from the existing particular, their paper analyzed the problem of flocking in
formation(s) to track new targets while causing the leas{ certain pattern and following a designated leader vehicle,
dlstur_bance to other sensors. Therefore |t_ raises the q_uestwﬂne maintaining the pattern. Olfati-Saber [12] developed
of which sensors should split from the existing formation(s), gistributed flocking algorithm for mobile sensor networks
so that the total energy and time consumption are minimizeg t;ack a moving target. In his paper, an extension of a
In addition, when some targets disappear the sensors WhigRyihuted Kalman filtering algorithm was used to estimate
are tracking these targets should rejoin (merge) with thge (arget's position. In general, the published literature has
existing groups that are still tracking targets. focused on single target tracking. Flocking control of mobile
This project is supported by the Viethamese Government, MOET (Min-Sensor networks for mu_l?'pk_:" targets trac_k'ng IS very ||m|te_d'
istry of Education and Training) program. _ Sensor network partitioning has received much attention
Hung Manh La and Weihua Sheng are with the school ofpn recent years. Bettstetter [13] gave equations for the cluster
Electrical and Computer Engineering, Oklahoma State Un|verS|tyd it d clust d fh v distributed nod
Stilwater, OK 74078, USA ffung. | a@kst at e. edu, ensity and cluster oraer ot hemogeneously distributed nodes
wei hua. sheng@kst at e. edu). running the distributed mobile adaptive clustering algorithm.

A. Motivation



Virrankoski and Savvides [14] proposed a topology adaptiveonar or laser sensor that allows it to estimate the position
spatial clustering (TASC) for sensor networks. TASC is and velocity of the target.

distributed algorithm to partition the network into subgroups The dynamic equation of each sensor is described as
(clusters) without the knowledge of the number of clusterdpllows: _

cluster size and node coordinates. Karger and Stein [15] { g=p )
presented an approach to find the minimum cuts in undirected pi=u, i=12..n

graphs. This approach is based on the fundamental principie geometry of flocks is modeled by anlattice [2] that
that the edges in a graph’s minimum cut form an extremelyys the following condition:

small fraction of the graph’s edges. To do that they gave _

a randomized, strongly polynomial algorithm that finds the lai—qjll=d,j €N ©))
minimum cut in an arbitrarily weighted undirected grapqﬁered is a positive constant indicating the distance between
with high probability.Derbel and Mosbah [16] proposed a . : . :
: - L . ; ensoli and its neighboy.

linear time distributed algorithm for decomposing a grapﬁ ! . . . - .
: - . . ) The configuration which approximately satisfies the condi-
into a disjointed set of clusters. This algorithm is paralle{i

. L 2 w2
in its nature. In [17], [18], Goebel®t al. presented a on (8) is called a quasa-lattice, i.e. (g — g | - d)” < &%,
with 6 << d.

neighborhood-based strategy, a border switch strategy, and ar|1:irstly based on Olfati-Saber's flocking algorithm with
exchange target strategy for the partitioning of large sets o U . . .
. : obstacle avoidance [2] we design a flocking control algorithm
agents onto multiple groups. In summary, the previous works: L ) ) )
S . . ith a dynamicy-agent. In this scenario, the dynamyiagent
solved the graph partitioning problem in both centralized and’ - idered as a moving taraet
decentralized fashions, but in the decentralized way they are g farget.
usually based on the density of node’s distribution. Hencg = ¢ z @ (/|gj — Gillo)nij + 5 z aj (q)(pj — pi)
the number of nodes in each sub-group is different. jENC jeN®
The rest of this paper is organized as follows. In Section B A A B _ A
Il we present the flocking control algorithm for single target ! ZB%(HQ'*" Gillo)fik+C ZB bi.k(A) (Pik — pi)
tracking and observing. Section Il presents the dynamic mrENi e kel
multiple targets tracking and observing algorithm. Section —C1"(Gi — dmt) — 2" (Pi — Pmt)- 4)
IV presents the experimental test results. Finally,

Section }{1 : . . -
. this control protocol, the paifgmt, is the position
concludes this paper. P paitdmt, Pmt) p

and velocity of the moving target respectively. The constants
are chosen as§ < ¢f* < cf, and ¢} = 2,/c]. Here ¢
are positive constants forn = 1,2 andv = a,3,mt. The
o —norm, ||.||g, of a vector is a mafR™ — R, defined
To describe a dynamic topology of flocks or swarms wes ||z|s = 1/¢[/1+¢€[|Z]|> — 1]. @ (2) and @3(2) are the
consider a dynamic grapB(9, E) consisting of a vertex set action functions to control the attractive or repulsive forces
9={1,2.,n}and an edge s& C {(i,j) :i,j €9,i# j}.In between sensoi and its neighborj, and the repulsive
this topology each vertex denotes one member of the flockorce between sensor and its obstaclek, respectively.
and each edge denotes the communication link between tw@ and rijx are the vectors along the line to connect the
members. pair (¢, dj), and the pair(Gix, Gi), respectively.a;j(q)
Let gi,pi € R" (m= 2,3) be the position and velocity and bjx(q) are adjacency matrices} i;pix are the posi-
of nodei, respectively. We know that during the motiontion and velocity of sensor projecting on the obstaclk,
of sensors, the relative distance between them may changespectively. The set ofi neighbors at timet, N%(t), is
hence the neighbors of each sensor also change. Therefaefined the same as(t) in (1), and the set o neighbors
we can define a set of neighbors of sensat timet as (virtual neighbors) of sensar at timet with k obstacles

follows: is NP(t) = {ke 9 Gik—al <r, 9= {1,2,...,k}} with

Nt ={jed:g—al<r,9={12...n}i#j} Q) r: being selected to be bigger than in our simulations
r =1.2xr. More details of the these terms, please see [2].
herer is an interaction range (radius of neighborhood circle The dynamic target is defined as follows:
in the case of two dimensions)= 2, or radius of neighbor- _
hood sphere in the case of three dimensioms; 3), and||.|| { Gt = Prmt (5)
is the Euclidean distance. Pmt = ft(Gmt, Pmt)-

Now, we considen sensors moving in am dimensional In the control protocol (4), the first two terms are used
Euclidean space. We address the motion control probleto control the formation (collision avoidance and velocity
for a group of sensors with the objective of dynamic targenatching among sensors). The third and fourth terms are
tracking. In this problem we assume that each sensor hased to allow sensors to avoid obstacles. The last term
a limited communication range to allow it to communicatgnegative feedback) is used for target tracking. If it is absent
with others and a large enough sensing range to make it sertbe control will lead to the fragmentation of the sensor
the target. We also assume that each sensor is equipped wititwork [2].

Il. FLOCKING CONTROL FOR SINGLE TARGET TRACKING
AND OBSERVING



IIl. DYNAMIC MULTIPLE TARGETS TRACKING AND border sensors, and receives the distances from other border
OBSERVING Sensors.

have to deal with the dynamic situation of targets appearirf@ceiVed _distances from other border sensors and finds the
and disappearing in the field. In the following subsection§ensor with smallest distance to be set as the Seed Sensor

we first address the problem of sensor network partitioninbss)-

and then discuss multiple dynamic targets tracking. Step 4.The SS counts its sons and broadcasts the pre-
o determined size of the new group to its sons. If the size of
A. Sensor network partitioning the new group is less than the predetermined size the sons

To deal with a new emerging target, the sensor netwonkill continue passing the message to their sons. This process
should automatically decompose into equal sub-groups amdrepeated until the size of the new group is equal to the
then each sub-group will be assigned to track one targgttedetermined size.

For example, consideM targets existing at timeé and Remark. In the SGGP algorithm, the number of sons of
M sensor groups$Gs,Gy,...,Gm) which are tracking these sensori is defined as:

targets (each group has abo/M sensors). If théM + 1)th

target appears theg; sensors should split off fronM S| = INi[ — |Fi[ - DB (6)
existing groups to form a new group to track the new targehere|S|, |N;|, || and|DB;| are the number of sons, neigh-
On the other hand to deal with a disappearing target, theyrs, fathers and the direct brothers of serisoespectively.
sensors which are tracking this target should split and merggr example in Figure 1, SS is the father of sensors 2, 3
with the existing groups. and 4. Sensor 3 is the direct brother of sensor 2, hence the

As discussed in Section II, the mobile sensor networkons of sensor 2 are only sensors 5 and 6. Sensor 2 can know
can be considered as a dynamic graph (dynamic topolog¥gensor 3 being its direct brother because its father (SS) sends
Hence we can apply some graph partitioning algorithms tg messagéDB} to tell which sensor is its direct brother. In
decompose the graph into sub-graphs (sub-groups). Howevgdgdition, two or more sensors can have the same son, but
some existing methods for graph partitioning are centralizegla sensor has the priorityP} to count this same son first
methods, which means that each sensor need global knoe remaining sensors will not count this son again. For an
edge of the whole network’s state to split from the networkexample of this situation, sensors 2 and 3 have the same son,
There are also some distributed graph partitioning or dissensor 5, but because of its smaller ID sensor 2 receives a
tributed graph clustering methods, but they are usually basggessage consisting ¢P} from its father (SS) hence it has
on the density of node’s distribution (sééerature review priority to count sensor 5 as its son first then it sends the
sectior). Hence the size of sub-groups is not predeterminegdounting number@N) to its direct brother sensor 3.
or the number of sensors in each sub—group is different. Figure 1 shows the message exchange when app|y|ng the

Based the above analysis, this paper proposes a se®dGP algorithm. The slashed green arrows represent the
growing graph partition (SGGP) algorithm to decide whichcounting number @N) which is sent after counting, and
sensor in the network should track new targets. The matfe solid red arrows represent the message exchange. In this
idea of this algorithm is based on seed growing. This meargenario assuming that we have 30 sensors (n=30), and they
that the mobile sensor which is closest to the new targgiready formed a network with-lattice configuration. This
will initiate the growth of the sensors into a new group bysensor network is tracking the current target. When a new
broadcasting the message to its sons in a recursive fashi@iiget appears, by applying the SGGP algorithm 15 sensors
until the number of sensors in the subgroup is equal to @g = n/2) split from the network to track the new target

predetermined threshold). By growing the number of with the total distance of all n/2 sensors to the new target
sensors in each generation from the seed sensor (the sensglihg minimized.

closest to the new target), the formation of each sub-group

is maintained during splitting. This leads to minimized totaB- Multiple dynamic targets tracking

energy and time consumption. In the multiple targets scenario, we assume that each
Assume all mobile sensors already formed a network witsensor is integrated with the flocking control algorithm,

ana-lattice configuration (see Figure 1). In this configuratiowhich deals with each different targédmy, pmy) with | =

if the sensor has 5 or 6 neighbors (6 is the maximum,?2,...,M described as below.

number of neighbors in this configuration) this sensor will a u

be inside the network. If the sensor has less than or eqiil = €1 > @(lldj—dillo)nij +cz 3 aj(a)(p;—pi)

to 4 neighbors it will be on the border of the network. This JEN? JEN?

sensor is called a border sensor. Based on this fact, the SGGP +c? z @ (/Gik— qi|\0)ﬁi’k+cg z bi k() (Pik — Pi)

algorithm is summarized as follows: keNP keNP
Step 1.Each sensor checks to find how many neighbors t t

it haspand decides if it is a border sensor. Y es ~Ca(G = Gm) — Co(Pi = Pmy)- "
Step 2.Each border sensor computes the distance to theAs discussed in Section Il, the dynamic tardesy , Pmy )

new target and forwards this distance information to the othémn (7) is exactly the navigation term to lead the flocks
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Fig. 1. Example of seed growing graph partition.

(mobile sensors) moving together. Without this term the - Parameters of flocking: Number of sensors = 120 (ran-
sensor network leads to fragmentation. This means thatdbmly distributed in the rectangular area with the size of
sensot is assigned to track another target it only need switcB0x90), the communication range- 1.2xd with d = 7.5,and
to another navigation term. This also means that if the newv= 0.1 for the g-norm.
target appears one by one the sensors which are selected by Parameters of target movement: The targets move in the
the SGGP algorithm will switch to another navigation termsine wave trajectory: For the targetdky, = [50+ 35, 295—
(another target). 35sin(t)]T with 0 <t < 8.5, and for the target 2y, = [85+

On the other hand in the merging case, for example, thre&t, 55— 35sin(t)]" with 1.26 <t < 8.5, andA; = 0.002 is
sensor subgroups are tracking three targets. If one of thethe step size.
targets disappears then this subgroup will decompose into|n this case, the SGGP algorithm will be compared with a
two equal groups and each one will merge into one of thrandom Selection (RS) algorithm. In the RS algorithm when
remaining subgroups to track the existing target by switchinghe new target appears a half of the sensors in the network

to another navigation term. which are tracking the existing target are selected randomly
to track the new target.
IV. EXPERIMENTAL TESTS Case2.Two targets appear one by one and one target

disappears.
- Parameters of flocking: these parameters are the same
In this section we will test our algorithm in two different with the Case 1.

cases of sensor splitting and merging. Parameters used in this Parameters of target movement: Parameters are set up

A. Test cases

simulation are specified as follows: the same as in Case 1, but the target 1 is set to run in the
Casel. Two targets appear one by one and no targenterval time 0<t <125, and the target 2 appears at time
disappears. t = 1.26 (at iteration 840) and disappears at time 8.4 (at



TABLE |
COMPARISON BETWEEN TWO ALGORITHMSSGGPAND RS.

iteration 4200).
Figure 2 (a) displays the result of tracking of Case 1 where

the targets appear one by one and move in a sine wave Algorithms | Dy (units) tr (5) tF ()

trajectory. Firstly, the whole group of 120 mobile sensors Sg Eglg 11%‘813-: 111-07070(;3;)819 181-314255612137
. . . 2 . .

form an o-lattice configuration and track target 1. _Then, gt SGGRGY) 11856 1 1203569 00

iteration 840 target 2 appears and the network decides which SGGRG,) 13126 9.007456 0.0

sensors will split and track this target. By applying the SGGP
algorithm, the sensor network automatically decomposes into

2 equal sub-groups (60 sensors in each sub-group). Thep, s the total travel distance between all sensors in each
second sub-group which is closest to target 2 tracks targgfoup and its target, and it is computed when the network is
2, and the first sub-group keep tracking target 1. The SGGigcomposed into sub-groups to when the average of positions
algorithm allows two sub-groups to maintain their formationys sensors in each sub-group reaches the target (this is

when they split. Figure 2(b) represents the error betwegRa|yated based on the same condition as used to compute
the average of positions in the whole network and target t:lr below).

(from i_t(.eratio_n 1 to 839), and the error between the averaget g the tracking time which is computed based on the
of positions in _sub—group 1 and target 1 (from iteration 84%ondition: H%Xinj'lq —q < ©Or | =1,2; hereng, is
to the end). Figure 2(c) represents the error between the |

average of positions in sub-group 2 and target 2. We sé‘é’mbemf sensors in each sub-graipandG; respectively,

that at iteration 840, the average of positions of senso?sndQT IS a glven. thrgshold. , , !
is the formation time representing the time that it costs

slightly changes because at this time the average of sensorsl’ bil ¢ K This f . .
positions in sub-group 1 will replace that of the wholg?!! MODIIE SENSors to form & netyvor - NI ormation time
computed based on the following condition:

network. In this figure we see that all tracking errors are ver&? 1 1 )
small in free space. This means that all sensors in the wholevVar(llai—ajll) = B2 (lgi —ajll = g, Y.ieg 16— ajll)
network or in each sub-group can surround the target closefy @3 With i,j =1,2,..., ng;; | = 1,2; here©f is a given
to observe it easily. However in the presence of obstacles, tHgeshold, and # j.

errors are significant because the repulsive forces generatedn the RS algorithm, the values dy, tr, andte are
from obstacles push the sensors away from them. obtained based on the average value of 50 running times.

Figures 3 shows the results of tracking in Case 2 where Comparison between RS and SGGP algorithms: The max-
the targets appear one by one and then one disappears. Wheum of the tracking time and formation time in SGGP
target 2 appears at iteration 840 the results are similar witgorithmtZg¥,= maxtr,tr)g, + maxtr,tr)c, = 10.211(s)
Figures 2. When target 2 disappears at iteration 4200 sutvhile in RS algorithmtgd* = 20.1161(s), or tg&5p is 49.28
group 2 which is tracking this target will rejoin sub-group% less thant3&X The total distance in SGGP algorithm
1 and continue to track target 1. The tracking result of thBL;5p= D$! + D§2 = 143116(units) while in the RS al-
whole group after merging is good with small tracking errogorithm DLg= 153787(units), or Dgpis 7% shorter than
between the average of sensors’s positions and target 1D
the free space as shown in Figure 3 (b) (from iteration 4200 |n all the above simulation results, all sensors keep their
to the end). formation (excepting in the case of the RS algorithm) and

. . collision occurs among them while tracking the moving
B. Cpmparlson between the SGGP algorithm and the I{grget, and all sensors avoid obstacles successfully in a
algorithm narrow space. For more details please see some video files

In this subsection we will compare two algorithms, SGGRyhich are available at our ASCC Lab’s website.
and RS, in term of tracking time, formation time, and total http: //asccokstateedw/ projectshunghtml
distance of all sensors in each sub-group to its target. These
comparisons also imply the time consumption and power
consumption in each sub-group.

Similar to Figures 2 (a, b, c), Figures 2 (a’, b’, ¢’) also This paper develops an approach to flocking control of
shows the results of tracking to Case 1 where the targeds mobile sensor network to track and observe multiple
appear one by one and move in the sine wave trajectoijynamic targets. The SGGP algorithm is proposed to solve
However, the difference here is that when target 2 appeatse problem of splitting/merging the sensor agents. To see
half sensors in the whole network are split to track this targehe benefit of this algorithm we compared it with a random
by using the RS algorithm. With this algorithm two sub-selection (RS) algorithm, and the results are promising. The
groups do not maintain their formation, and all sensors imaximum of the convergent distance and formation time in
each sub-group need certain time to reform a network. Thtee SGGP algorithm is faster than that in the RS algorithm. In
is the main drawback of this algorithm, and some data amddition, the distance in the SGGP algorithm is shorter than
collected to compare the SGGP and the RS algorithms whithat in the RS algorithm. The numerical experimental tests
is shown in Tabld. were done with two different cases of splitting and merging

Parameters in the Tableare computed as follows: sensor agents to demonstrate our theoretical results.

V. CONCLUSIONS
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(a, &)- Snapshots of the beginning initial positidnatole group, splitting positions of sub-group 2 and the ending positions of two sub-groups

which are tracking the targets moving in the sine wave trajectories, (b, b’)- Error between the average of sensors’s positions in the whole network and
target 1 (iteration 1 to 839), and between the average of sensors’s positions in sub-group 1 and target 1 (iteration 839 to the end), (c, c’)- Error between
the average of sensors’s positions in sub-group 2 and target 2. These results are done by using the flocking control algorithm (7) with SGGP and RS
algorithms, respectively
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Fig. 3. (a)- Snapshots of the beginning initial position ofalehgroup, splitting positions of sub-group 2 and the ending positions of two sub-groups
which are tracking the targets moving in the sine wave trajectories, (b)- Error between the average of sensors’s positions in the whole network and target 1
(iteration 1 to 839, and iteration 4200 to the end), and between the average of sensors’s positions in sub-group 1 and target 1 (iteration 840 to 4200), (c)-

Error between the average of sensors’s positions in sub-group 2 and target 2. This result is done by using the flocking control algorithm (7) and SGGP
algorithm.





