CHORELLA — A Reliable and Scalable
Addressing Scheme for Data Distribution

Sravanthi Peruru

Abstract— The core problem confronting Distributed Data
Storage and peer to peer applications is to efficiently locate the
node where the requested data is present. This paper presents
Chorella, an addressing scheme to solve this problem. Chorella,
which is built upon the ideas of Chord and Gnutella (peer to peer
protocols) finds the location of the requested data in the network.
Chorella can adapt efficiently when the existing nodes leave the
network under certain conditions.

Index
Chorella.

Terms—Addressing Scheme for data distribution,

I. INTRODUCTION

Data centers store, manage, process, and exchange digital
data and information. In the general case, the data may be
distributed over many servers. Peer to peer systems are loosely
organized systems without any centralized control or any
hierarchical structure. Data centers and peer to peer systems
share a common communication model in which each node
acts as both client and server. A node’s request is forwarded to
all or few other nodes in the network until the desired node
which contains the requested data is found.

II. PROBLEM FORMULATION

The currently popular peer to peer protocols, such as Chord
and Gnutella, suffer from serious drawbacks. In case of Chord,
data needs to be moved among the nodes continiously as nodes
join and leave the networks , implying it to be unacceptable.
And with Gnutella, the request traffic is too high. In view of
these drawbacks, we propose a new protocol called Chorella
which provides a reliable and secured addressing scheme.

The Chord protocol will resolve all the lookups via O(log
N) messages to other nodes[1]. There can be a more efficient
lookup service which can take less than O(log N) messages.
Also the stabilization overhead in Chord prevents it from being
used widely. Although the Gnutella protocol is a widely used
model, has many drawbacks. The main drawback of Gnutella
protocol is its heavy request traffic. The passing of messages
in Gnutella generates much traffic in the network often leading
to network congestion and slow responses.

SravanthiPeruru is with the Computer Science Department, Oklahoma
State University, Stillwater, OK 74078 USA. (e-mail:
sravanthi.peruru@okstate.edu)

And this makes the quality of service poor, since the
response to queries are delayed. A study [3] showed that
the traffic in Gnutella systems is mainly due to messages for
establishing intial connections and queries. Ripeanu [4]
reported that the traffic generated in Gnutella consists of
approximately 92% Query messages, 8% Ping messages and
hence the other messages constitute less than 1% of the traffic.

III. BACKGROUND

Chord and Gnutella are the most prominent peer to peer
protocols. The proposal of Chorella has been motivated by
these two protocols Chord and Gnutella. Chord is a peer to
peer protocol which presents a way out, to the problem of
efficient location of a node. Chord supports just one operation:
given a key, it maps the key onto a node [1]. Chord uses the
routed queries to locate a key with a small number of hops,
which remain considerately small even if the system contains a
large number of nodes. Chord uses consistent hashing to assign
keys to the nodes. Each node and key is assigned an m-bit
identifier using SHA-1 as a base function. Node ID (identifier)
is obtained by hashing the IP address of the node. KeyID
(identifier) is obtained by hashing the filename. Length of the
identifier should be large enough so that the probability of two
node IDs or keylDs hashing to the same identifier is
negligible. In consistent hashing keys are assigned in the
following way: Identifiers are ordered on an identifier circle
modulo 2™ Key k is assigned to the first node whose identifier
is equal to or follows (the identifier of) k in the identifier
space. The node is called the successor node of key k, denoted
by successor(k).

NI+l | N3
N41 | W
Ni+i | N4
N+ | N

N5

Fig. 1. Routing through Chord circle.

The principal function of Chord protocol is the key look-up
function. Every node n maintains a routing table with up to m
entries (where m is the number of bits of the identifiers) called

finger table. The i" entry in the table at node n contains the
identity of the first node S that succeeds n by at least 21 on
the identifier circle. This node S is called the ith finger of node
n. When a node is asked to find a file associated with a
particular key, it will first find the highest successor of this key
in its routing table and forward the key to that node. This
process continues until the node responsible for that key is
found. Because each node has finger entries at power of two
intervals around the identifier circle, each node can forward a
query/request at least half way along the remaining distance
between the node and the target identifier.

Fig.1. Shows how the routing takes place in traditional
Chord.

Gnutella is another common protocol for filesharing P2P
applications [2]. A node that is posed with a request sends the
query to all of its neighbour nodes, who will inturn send the
query to all of their neighbour nodes and this query
broadcasting continues until the query reaches a node that has
a file which matches the query, or until a certain predefined
maximal number of forwards is reached. If the destination
node (node where the requested file is present) is reached, then
that node sends back a reply to the query containing its
address, the size of the file, speed of transfer, etc. The reply
travels through the same path by which the query arrived, but
in the reverse order back to the node that posed the query. In
this manner each message is propogated to upto n’ other nodes
where n is the number of neighbour nodes and p is the
maximum number of forwards called “time to live” (TTL) of
the query.

Fig. 2 represents the communication that takes place in
Gnutella. When node 1 recieves a query, it broadcasts the
query to its neighbour nodes 2 and 3. 2 and 3 nodes in turn
broaddcast the request to their respective neighbours which are
4, 5 and 6, 7 respectively. Nodes 4, 5, 6, 7 in turn broadcast
their requests to their neighbours. In this way the request
traverses the network until it hits a nodes with the required
response or until a maximal number of forwards is reached.

IV. PROPOSED APPROACH

The prime goal behind designing the new protocol
CHORELLA is to provide an efficient way of addressing a
node in the distributed data storage systems and to avoid the
heavy network traffic and minimize the number of lookup
messages. CHORELLA steals few of the properties of Chord.
It is similar to Chord in a way how the Chord organizes its
nodes on an identifier space. DNS provides a host name to IP
address mapping [8]. CHORELLA can provide the same
service with the name representing the key and the associated
IP address representing the value. We take into consideration
that there can be a maximum of 2*° nodes that can be a part of
the network; Chorella identifies a 2°° bit identifier space to
place the nodes on the identifier circle.

A. Mapping of nodes

Every node that wants to be a part of network, must register
itself with the manager node. The manager node assigns it a 20
bit ID. The manager node also provides each node that
registers, with a copy of mapping table.

Let this 20 bit address assigned by the manager node be the
nodelD of the corresponding node.

Place this node on an identifier circle of identifier space 2%°.
Identifier circle can be thought of as a circle which represents
values between 0 and 2%-1
Each node stores a copy of mapping table. Mapping table
contains a set of IP addresses and their corresponding 20 bit
mapped value, of all the nodes present in the network.

Fig. 3 shows how a node is placed on an identifier circle.
When a node with nodeID 6 wants to join the network, it is
placed at an identifier space 6 on the identifier circle.

Table I illustrates the mapping table which holds the IP
addresses and their corresponding nodelDs (represented in 6
bits).

Fig. 3. Node placement on an identifier circle with identifier space 2°.

B. File Distribution in CHORELLA

Any file that is to be placed on a node:

Hashes it keys (Key of the file depends upon the application
using it, Chorella doesn’t define this) to a 160 bit hash value
using SHA-1[7], a consistent hashing [5], [9] algorithm.

Least significant 20 bits of the 160 bit hash value, together
with 160 bit hash value and filename forms the KeyID.

KeylID = [least significant 20 bits of the 160 bit hash value ;
160 bit hash value of key ; filename]

Though the 20 bit key hash of each file may not be unique
but, the 160 bit hash value together with 20 bits and file name
makes it unique.

This file is placed at a node whose nodelD is equal to or
follows the least significant 20 bits of the 160 hash of the
filename.

C. File Search in CHORELLA

When a client (one among 2°° nodes) requests for a file:

The client itself converts the key associated with the file into
a 160 bit hash value using SHA-1 algorithm.

It extracts the least significant 20 bits of the 160 bit hash
value and forms the keylD

TABLE I
MAPPING TABLE

IP Address 6 bit mapped value
139.78.67.161 000000
19.178.197.01 000001
248.216.90.87 000010
32.7.165.987 000011

19.148.27.1 000100
27.68.69.178 000101
169.218.197.1 000110
247.158.67.87 000111

Mapping table with IP address and its corresponding 6 bit mapped value
(nodelD).

The client then obtains the IP address of the node whose
nodelD is equal to the first value (20 bits) of the keylD
searching from the mapping table. It searches for the IP
address corresponding to the node whose nodelD is equal to
the 20 bits in keyID.The client then requests that node for that
particular file.

Fig. 4. Represents an example for the file search operation.
When there is a query for file name db.txt (i.e., a file, named
db.txt is requested by the client), the client will first convert
the key of the file into an integer value of length 4 (In case of
CHORELLA it is the 160 bit hash value) which is 6202. The
least significant 2 digits of the 6202, i.e., 02 is extracted. The
client now knows that the file should be present with the node
whose nodelD is equal to 02. So the client now searches for
the IP address corresponding to nodeID 02 from the mapping
table and obtains it. After obtaining the IP address the client

e 02 ; 6202 ; db.txt

07 01

06 02

04

Fig. 4. File search in CHORELLA

directly sends a request to the node whose IP address is
obtained, for a file named db.txt.

D. Node Failure in CHORELLA

To ensure the data availability even in case of node failure:

Each file on a node is replicated [6] and placed at other
nodes.

File is stored at a node whose nodelD is equal to or follows
the keyID in the identifier circle. Every file is replicated and
stored at two or more locations.

Copy of the file is stored at locations or nodeID’s which are
obtained by rehashing the 160 bit hash value of the original
160 bit hash value and extracting the least significant 20 bits

from it. This mirror file is stored at a node whose nodelD is
equal to these 20 bits, obtained. No of replications or the no of
mirrors depend on the probability of node failure in the
network. The client first requests the owner node for the file.

If the owner doesn’t respond to the request submitted by the
client in a stipulated time interval, the client forwards its
request to that node whose nodelD is obtained by rehashing
the 160 hash of the file key. In this manner the client searches
for the file with every mirror until it finds the requested file.
This makes the protocol reliable even in case of node failure.

There is a manager node which is always alive, to keep track
of modifications in mapping table. If any client submits its
request and the node doesn’t respond within some stipulated
time interval, the client assumes that node to be absent in the
network and thus reports to the manager node about the
absence of that node. The manager node will update its
mapping table by removing the tuple corresponding to the
node that is left.

The manager node, circulates its mapping table to all the
nodes in the network after some time interval, in order to
stabilize the network by updating the mapping tables present
with every node in the network and thus makes the network
stable.

V. CONCLUSION

Many applications need to determine a node that stores a
data item. Chorella performs an action of finding a node given
a file in a single hop. Striking features of Chorella includes
scalability, reliability. Such a system could also be used for
storing pieces of data on several nodes.

REFERENCES

[1] MORRIS, R., KAASHOEK, M. F., KARGER, D., BALAKRISHNAN,
H., STOICA, 1., LIBEN-NOWELL, D., DABEK, F.: Chord: A scalable
peer-to-peer lookup protocol for internet applications
http://pdos.csail.mit.edu/papers/Chord:sigcomm01/Chord_sigcomm.pdf

[2] GNUTELLA Website: http://gnutella.wego.com.

[3] Vaucher, J., Babin, G., Kropf, P., and Jouve, Th. (2002), “Experimenting
with Gnutella Communities”, Distributed Communities on the web
(DCW 2002), Sydney, Australia. LNCS 2468, Springer Berlin, pp.85-99

[4] Ripeanu, M. (2001), “Peer-to-Peer Architecture Case Study: Gnutella
Network”, Proceedings of IEEE 1* International Conference on Peer-to-
Peer Computing Linkoping , Sweden.

[5] KARGER, D., LEHMAN, E., LEIGHTON, F., LEVINE, M., LEWIN,D., AND
PANIGRAHY, R. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web. In
Proceedings of the 29th Annual ACM Symposium on Theory of
Computing (El Paso, TX, May 1997), pp. 654—663.

[6] PLAXTON, C., RAJARAMAN, R., AND RICHA, A. Accessing nearby copies
of replicated objects in a distributed environment. In Proceedings of the
ACM SPAA (Newport, Rhode Island, June 1997),pp. 311-320.

[71 FIPS 180-1. Secure Hash Standard. U.S. Department of
Commerce/NIST, National Technical Information Service, Springfield,
VA, Apr. 1995.

[8] MOCKAPETRIS, P., AND DUNLAP, K. J. Development of the Domain
Name System. In Proc. ACM SIGCOMM (Stanford, CA, 1988), pp.
123-133.

[9] LEWIN, D. Consistent hashing and random trees: Algorithms for caching
in distributed networks. Master’s thesis, Department of EECS, MIT,
1998. Available at the MIT Library, http://thesis.mit.edu/.

