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VRP with Time Windows (VRPTW)
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Description of PVRPTW

�The Periodic Vehicle Routing Problem with Time 

Windows (PVRPTW) is defined as having:

� A planning horizon of t days,

� n customers having a demand qi > 0, a service duration di >0, a 

time window [ei, li ], a service frequency fi and a set Ri of 

allowable patterns of visit days,allowable patterns of visit days,

� a single depot with time window [e0, l0], at which is based a 

fleet of m vehicles with limited on capacity and duration,

� a cost (or travel time) cij > 0 between the locations.
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Description of PVRPTW

� The PVRPTW aims to select a single visit day pattern per 

customer and design at most m vehicle routes on each day of 

the planning horizon such that:

� each route starts and ends at the depot in the interval [e0, l0],

� each customer i belongs to exactly fi routes over the horizon 

and is serviced in the interval [ei, li ],and is serviced in the interval [ei, li ],

� the total capacity and duration of route k do not exceed Qk and 

Dk , respectively,

� the total cost (or travel time) of all vehicles is minimized.
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PVRPTW’s mathematical formulation

( , )

minimize  

subject to

t

ij ijk

t T i j E k K

c x
∈ ∈ ∈

∑ ∑ ∑

1                                        (1)

                , ,        (2)

            ,              (3)

                

i

i

ir C

r R

t t

ijk jik

j V j V

t

ijk ir rt C

k K j V r R

t

y i V

x x i V k K t T

x y a i V t T

x m

∈

∈ ∈

∈ ∈ ∈

= ∀ ∈

= ∀ ∈ ∈ ∈

= ∀ ∈ ∈

≤

∑

∑ ∑

∑ ∑ ∑

                      (4)t T∀ ∈∑ ∑ 0
                

t

jk
x m≤

,

0

                      (4)

1                , ,        (5)

1                     ,              (6)

                ,           

C

C

k K j V

t

ijk C

i j S

t

jk

j V

t

i ijk

i V j V

t T

x S S V k K t T

x k K t T

q x Q k K t T

∈ ∈

∈

∈

∈ ∈

∀ ∈

≤ − ∀ ⊆ ∈ ∈

≤ ∀ ∈ ∈

≤ ∀ ∈ ∈

∑ ∑

∑

∑

∑ ∑

0 0

    (7)

(1 )   ( , ) , ,      (8)

                    , ,       (9)

( )          ,             (10)

C

t t t

jk ik i ij ijk

t

i ik i C

t t

i k ik i i

i V

w w s c M x i j E k K t T

e w l i V k K t T

x w s c D k K t T
∈

≥ + + − − ∀ ∈ ∈ ∈

≤ ≤ ∀ ∈ ∈ ∈

+ + ≤ ∀ ∈ ∈∑

8



Genetic Algorithms: Engineering view

Two horses and a groom (Han Gan [Tang Dynasty])
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Genetic algorithms: Evolutionary view

� Species constantly have to adapt to 

changes in their environment.

� Fittest individuals of a specie live 

long enough to breed (natural 

).selection).

� They pass their genetic adaptive 

features to their offspring.

� Through several generations, the 

specie get the upper hand on 

environment changes.
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GA  as an optimization method

� A stochastic search method.

� The environment is the cost function.

� A specie is a set of solutions

� Individuals are solutions, the cost  of a solution measure it fitness. 

Furthermore, solutions are encoded under a suitable representation.

� Individuals (solutions) are selected to breed based on a random 

procedure biased by the fitness of the solutions.

� Breeding consists to brake solutions into components and to reassemble 

components to create offspring.
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GA as optimization method
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Pseudo code for generational GAs

13



Overview of our GA for PVRPTW
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Representation of individuals
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Individual fitness

The fitness function:  ( ) ( ) ( ) ( ) (s)
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Algorithmic elements
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The initial population

� Each customer is assigned a feasible pattern of visit days 

randomly.

� Solve VRPTW by applying:

1. Time-Oriented, Sweep Heuristic by Solomon.

2. Parallel route building by Potvin and Rousseau.

3. Our route construction method.3. Our route construction method.
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Algorithmic elements
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Roulette Wheel selection operator
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Algorithmic elements
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The first crossover operator
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The first crossover operator
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The first crossover operator
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The first crossover operator
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The first crossover operator
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The first crossover operator
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The second crossover operator

� For each day t, one parent among {P1, P2} is selected 

randomly, from which all routes in day t are copied into the 

offspring Off2.

� Remove/insert customers from/into days such that the pattern 

of visit days of all customers are satisfied.
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Algorithmic elements
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At  issues

� GA not well adapted to constrained optimization, crossover create 

infeasible solutions.

� PVRPTW is a heavily constrained optimization problem.

� Usually repair strategies aim at regaining feasibility, but for PVRPTW 

this often leads to very poor solutions.this often leads to very poor solutions.

� Not only solutions are poor, but also their genetic make-up (building 

blocks hypothesis).

� Need to repair not only feasibility but also the building block features 

of the population.

� Make use of metaheuristics.
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Repair strategies

Phase 1: Simultaneously tackle routing and pattern improvements

� Unified Tabu of Cordeau et al. 

� Random VNS of Pirkwieser and Raidl: order of neighborhood structures are 

chosen randomly

� Pattern improvement: explore all feasible patterns of all customers where 

each customer is reassigned to new pattern, one by one

Phase 2: Routing improvements

� locally re-optimize the routes in 

which hybridized neighborhood 

structures with a set different route 

improvement techniques are used
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Algorithmic elements

START

Initial 

population

Random

individuals

Immigration

1st generation

Nth generation

Fitter 

Fitter 

individuals

32

N > genMAX ?

“Children” population

NO

YES

STOP

Mating pool

Unfit 

individuals

Offspring
New 

individuals 
New

population

Roulette 

wheel

Crossover  

& mutation
Repair

Fitter 

individuals



Replacement

� nPop parents are selected from the current population using Roulette 

wheel to build the mating pool and nPop offspring are then created. 

� The next generation is composed of the nKeep best individuals among 

the pool of chromosomes in the current population (nKeep < nPop) and 

nPop new offspring.nPop new offspring.
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Previous works

20 instances generated by Cordeau et al.

1. Unified Tabu Search of Cordeau et al. (2001)

� (1) move a customer, (2) change pattern of a customer,

� accept infeasible solutions.

2. Variable Neighborhood Search of Pirkwieser and Raidl (2008)

� change pattern of a customer, (2) move a segment, (3) exchange segments,� change pattern of a customer, (2) move a segment, (3) exchange segments,

� accept worse solutions. 

45 instances generated by Pirkwieser and Raidl

1. Hybrid scheme between VNS and ILP-based column generation approach (2009)

2. Multiple cooperating VNS (2010)

3. Hybrid scheme between multiple-VNS and ILP-based column generation approach (2010)
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Instances

BenchmarkBenchmark #instances#instances #customers#customers #vehicles#vehicles PlanningPlanning periodperiod

Cordeau et al. 20 [48, 288] [3, 20] 4 or 6 days

S.Pirkwieser & Raidl 45 100 [7, 14] 4, 6 or 8 days
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Experiment parameters

Parameters Setting Final values

Small instance Large instance

Population size (nPop) [50, 400] 100 350

Number of elite (nKeep) [25, 300] 60 200

Number of iterations applying UTB [20, 120] 60 100

Number of iterations applying VNS [100, 800] 100 200
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Numerical Results

� Compare with currently best published results:

� For 20 instances generated by Cordeau et al.: produces 19 new 

best known solutions, with improved quality of 0.75% on average 

in term of best solutions cost.

� For 45 instances generated by S.Pirkwieser and Raidl: produces � For 45 instances generated by S.Pirkwieser and Raidl: produces 

solutions with improve quality of 0.88% on average in term of 

average solutions cost.
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Numerical Results
Instances UTB VNS HGA %GAP to BKS

No n T m D Q

1a 48 4 3 500 200 3007.84 2989.58 2989.58 0

2a 96 4 6 480 195 5328.33 5127.98 5107.51 -0.40

3a 144 4 9 460 190 7397.10 7260.37 7158.77 -1.40

4a 192 4 12 440 185 8376.95 8089.15 7981.85 -1.33

5a 240 4 15 420 180 8967.90 8723.63 8666.59 -0.65

6a 288 4 18 400 175 11686.91 11063.00 10999.90 -0.57

7a 72 6 5 500 200 6991.54 6917.71 6892.71 -0.36

8a 144 6 10 475 190 10045.05 9854.36 9751.66 -1.0410045.05 9854.36 9751.66 -1.04

9a 216 6 15 450 180 14294.97 13891.03 13707.30 -1.32

10a 288 6 20 425 170 18609.72 18023.62 17754.20 -1.49

1b 48 4 3 500 200 2318.37 2289.17 2284.83 -0.19

2b 96 4 6 480 195 4276.13 4149.96 4141.15 -0.21

3b 144 4 9 460 190 5702.07 5608.67 5567.15 -0.74

4b 192 4 12 440 185 6789.73 6534.12 6471.74 -0.95

5b 240 4 15 420 180 7102.36 6995.87 6963.11 -0.47

6b 288 4 18 400 175 9180.15 8895.31 8855.97 -0.44

7b 72 6 5 500 200 5606.08 5517.71 5509.08 -0.16

8b 144 6 10 475 190 7987.64 7712.40 7677.68 -0.45

9b 216 6 15 450 180 11089.91 10944.59 10874.80 -0.64

10b 288 6 20 425 170 14207.64 14065.16 13851.40 -1.52
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Conclusion

� This algorithm outperforms the best existing methods for solving 

PVRPTW.

� It is part of a larger project to develop a cooperative system for VRP:

� A set S = {1, 2,…,n} of  n different search agents with dynamics    

x (t + 1) = h (x (t - 1)), i ∈ Sxi(t + 1) = hi (xi (t - 1)), i ∈ S

� Agents  are  part  of a network  which  can be  represented  by  an 

oriented graph G = (V, E), V = {1, 2,…,n} and E ⊆ V x V

� are the neighbors of search agent i

� Cooperation protocol: 
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