

Abstract—Cache prefetching improves hit rates in cache

memories. In this paper we are testing the effectiveness of

Markov prefetching scheme based on Markov models in order to

predict memory references that will cause a miss in L1 cache.

Our experiments show that Markov history table size of 32 is

sufficient and a prefetch buffer size of eight can help achieve hit

rates of up to twenty percent in L1 miss stream depending on the

locality of reference present in instruction and data set of the

application.

Index Terms—Markov model, Prefetching

I. INTRODUCTION

Demand fetching is commonly employed to bring the data

from main memory to the processor as and when required for

the processor. In contrast prefetching tries to get the data from

the main memory before processor requests for it. Memories

are orders of magnitude slower than processors. Predicting and

issuing prefetches for future memory references by the

processors is one of the many techniques employed to

overcome this difference in the speeds.

In this paper we are trying to test the usefulness of a

stochastic Markov model to predict memory block addresses

that will be prefetched. Andrei Markov proposed Markov

model [1]. Markov property states that, if present state is

known then we can predict the future states, irrespective of

what the past states were. To put it in other words if present

state is known then future and past states are independent. A

Markov chain is a sequence of random variables with the

Markov property.

Markov predictors find diverse applications in computer

science. Optimal resource allocation and higher quality of

service is much needed requirement in case of wireless

networks. In order to improve the above factors, intelligent

prediction of network behavior plays a very important role.

Gani[Et.al] show the use of Markov tools to predict the

number of wireless devices that are connected to a specific

instant of time[2]. Bartels uses Markov based of

implementation of prediction by partial matching to learn and

predict the access patterns of real applications. Further they us

this PPM scheme for adaptive memory prefetching from disk

to memory.[3]

When it comes to prefetching cache blocks, Jouppi Et.al [4]

introduced stream buffers as a significant method for improved

direct mapped cache performance [4]. Doug Joseph Et. al [5]

use the ground work laid by Jouppi and show that a simple

effective and realizable Markov prefetcher can be built as an

off-chip component.
1miss history table: It stores history of miss addresses. It records which

block occurred after a given block in miss stream from L1 cache. It is a LRU

structure. A sample is shown in Table 1

Fig.1 Memory Hierarchy and Markov prefetch engine. This figure shows

modified memory hierarchy along with Markov prefetch engine and prefetch

buffer.

They compare the performance of Markov predictors with

other prefetching schemes like static predictors, indirect

stream predictors and correlation based prefetching, stride

prefetchers and stream buffers. Comparison of all these models

showed that Markov prefetcher is the best choice for

prefetching.

We take this idea further by implementing Markov

prediction based prefetching scheme and try to find out best

possible choices for how large these prefetch buffers should be

and how much history should be stored so that Markov

prediction model can significantly improve L1 cache miss

rates.

In our case the prefetcher has to predict a future memory

reference and fetch it from the main memory before the

processor actually asks for it. We have the current cache state

or dataset used by the processor; if we consider a large number

of memory references in order to be able predict the next

address then size of miss history table
1
 becomes a huge

overhead. Hence choosing a model that can predict the future

only with present state independent of the future is a good

idea. Markov model comes close to satisfying these criteria

hence it is a good choice for address prediction.

Fig 1 shows our experimental memory hierarchy that

includes Markov miss-history table and a prefetch buffer
2
.To

implement prefetching one way is to consider all the memory

references by the processor. But that way the prefetcher will

have to handle multiple addresses every cycle and will be

inundated by the number of requests it has to handle.
2Prefetch Buffer: It is an on chip buffer that holds blocks of data prefetched

by Markov prefetch buffer. It is FIFO structure. When a miss occurs in L1

cache this prefetch buffer is checked concurrently with L2 cache.

Markov Prediction Scheme for Cache Prefetching
Pranav Pathak, Mehedi Sarwar, Sohum Sohoni

ECE Department Oklahoma state University, Stillwater OK 74074

Microprocessor

L1

Cache

Prefetch

Buffer

Makov Prefetch engine and

Miss History table

L2 Cache

Main memory

L1 miss

stream

Prefetched

data

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 14

Miss

Address

(Current

Miss)

Next Miss Address Prediction

(Most frequently used)

A B[2] C[1] D[1] E[1]

B D[2] A[1]

C E[1]

D A[3] E[1]

E D[1] B[1]

Table 1 Miss History table. Miss history table populated for miss

sequence of A-B-D-A-C-E-D-A-B-D-E-B-A-D-A-E.

Also all the prefetcher hardware will be on chip making it even

more costly. Instead we decided to prefetch based on stream of

misses from L1 cache. This will reduce the complexity of the

prefetcher. Fig. 1 shows the block diagram of memory

hierarchy and where a Markov prefetcher will be placed. As

seen from the diagram the Markov prefetch engine and history

table are placed between L1 and L2 caches and prefetch buffer

is placed alongside the L1 cache.

The Markov prefetch engine monitors the stream of L1

misses and updates miss history table .This history table then

helps decide addresses to be prefetched into on chip buffer.

Whenever a miss occurs in L1 cache then along with L2 cache

prefetch buffer is checked concurrently. If the prediction

engine is good enough then we can get more and more hits in

the prefetch buffer. This way we reduce effective miss rate of

the L1 cache.

Consider following example miss address stream from L1

cache A-B-D-A-C-E-D-A-B-D-E-B-A-D-A-E. In this

sequence A occurs four times, B follows A twice and C and D

once each. Probability of getting B after you get A is 50% for

C it is 25% and D it is 25%. Now whenever the Markov

prefetch engine sees miss reference A, It will try to prefetch B

which is most likely. Table 1 shows the state of miss-history

table for above mentioned stream of misses from L1 cache.

The number inside the square bracket indicates the number of

occurrences of that particular block after the current miss

address.

Prefetched blocks are stored into prefetch buffer. This

prefetch buffer is a FIFO structure with finite number of

entries. Whenever a miss occurs in L1 cache this prefetch

buffer can be checked concurrently with L2 cache and if a hit

occurs in this prefetch buffer we are reducing the L1 miss

penalty significantly.

Now we extend the same example to see how prediction is

performed. We use the L1 miss stream to build a history. Here

we basically find out which block is most likely to follow a

certain block in the miss stream. State of the Markov table

populated with frequently missed addresses for the sequence of

cache misses (A,B,D,A,C,E,D,A,B,D,E,B,A,D,A,E). The

numbers inside parenthesis denote the count value to keep

track of the most frequently missed addresses.

II. EXPERIMENTAL SET UP

In our experiment we did a trace driven simulation to check

the effectiveness of the Markov prefetcher. We generated

Fig.2 Transition probabilities for example miss sequence. Transitions

probabilities are calculated from example miss sequence and shown here.

traces from three applications. The first two traces are from the

SPECCPU 2006 benchmark [8]. They are GZIP and GCC.

GZIP is a commonly used compression program. Here we

have a trace of GZIP compressing a file. The compression

algorithm shows temporal as well as spatial locality of

reference. Second trace that we have used is that of GC

compiler compiling a C program, Compilation trace displays

less locality of reference in contrast with GZIP trace But is still

uses same set of instructions to compile a piece of code and

hence is not completely random in its memory access

behavior. The third trace that we used for simulation is of a

custom program. This program creates large array of numbers,

then calls a function to generate random numbers and uses

these random numbers as array indices to access array

elements. Mathematical operations are performed on these

numbers in the array. Hence we are expecting least locality of

reference in addresses accessed by the processor in this trace.

Thus we have traces from three different programs that exhibit

different amounts of locality of reference.

In our experiment we use separate Instruction and Data

caches at level 1. This is usually the case for most of the

modern processors. Each cache is 32KB, Block size of 32 and

4 way set associative.

We gauge the effectiveness of the Markov prefetching

strategy by monitoring L1 miss stream. For this a Markov

history table is maintained that helps predicting the next

address. The address is brought into a prefetch buffer and

prefetch buffer will be checked for every miss in the L1 cache.

Our simulator program records the number of hits in this

prefetch buffer. We find out the percentage of hits in the

prefetch buffer with respect to number of misses in L1 cache.

We use this percentage of hits to quantify the effectiveness of

prefetch strategy.

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 15

Simulation is performed using a Java program. This

program takes the trace file as its input. This trace file contains

memory references issued by processor. Each trace file entry

has the address of the data used and also has a field to indicate

whether it is an Instruction Read, Data Read or Data Write.

Depending on this classification simulator will send this

address to L1 instruction or L1 Data cache. Simulator program

instantiates a java class to simulate the operation of a cache. In

our case two instances are created one for L1 instruction cache

and another for L1 Data cache. Values for cache size block

size and associativity of cache can be set by user. The

simulator program reads trace file line by line and depending

on whether it is instruction or data, it is sent to the

corresponding cache. Whenever a miss occurs in L1 cache that

memory reference is sent to Markov history table. Here history

table is updated and prefetch buffer is checked. Also counts

are maintained for hits and misses in the prefetch buffer. Every

simulation terminates by outputting number of hits and misses

in prefetch buffer out of total misses in L1 cache.

In our simulation we vary two parameters; first parameter is

prefetch buffer size. We simulate for prefetch buffer sizes 1,

2,4,8,16,32 and 64. Second parameter that we can change is

the history table size. We simulate for history table size of 4,

32 and 128. Thus overall we perform 21 iterations of the

simulation.

III. RESULTS

Figures 3, 4, 5 and 6 show the results obtained from the

simulation when trace generated by GZIP application was used

as an input to the simulator. We varied prefetch buffer size in

powers of two up to 64 and this experiment was repeated for

three different history table sizes 4*4, 32*4 and 128*4.

As seen from Figure 3 and 4, for a fixed miss history table

size hit rates increases with prefetch buffer size. A larger size

allows the prefetch buffer to retain the prefetched blocks

longer and hence it avoids any capacity misses.

It is also observed that best results are obtained around the

buffer size of eight. Any buffer size below eight produces very

low prefetch buffer hit rate on the other hand increasing

prefetch buffer size beyond eight produces diminishing

returns
3
.

Another observation from figures is Data read Accesses

produce best hit rates in the prefetch buffer than other types.

This means Markov prefetcher captures locality in Data Read

type of accesses better for the case of GZIP application.

As seen in Figure 5 if we have a large enough Miss history

table then for any prefetch buffer size beyond eight the hit rate

for Data Read accesses is double than the hit rate for

Instruction Read Accesses.

Figure 6 is plot of hit rates for varying miss history table

sizes. Miss history table size of four does not produce any

usable results with any prefetch buffer size but as we increase

this Miss history table size we see more and more hits in the

prefetch buffer. This increase in miss history table size means

more history is captured and it allows better prediction results

from the Markov prefetcher.
3Diminishing return: up to buffer size 8 increasing buffer sizes gives better hit

rates but beyond 8 the hit rate slows down against increasing hardware costs.

The improvement achieved does not justify the hardware cost.

Fig 3: GZIP application with Miss history table size of 4*4. X axis plots

prefetch buffer size. Y axis shows % hit rates of prefetch buffer. Figure

shows that the History table size of 4 doesn’t produce any usable results.

Fig 4: GZIP application with Miss history table size of 32*4. X axis plots

prefetch buffer size. Y axis shows % hit rates of prefetch buffer. Upto

buffer size of 8 hit rates increase with buffer size after that only Data Read

accesses respond increased buffer size.

Fig 5: GZIP application with Miss history table size of 128*4 X axis plots

prefetch buffer size. X axis plots prefetch buffer size. Y axis shows % hit

rates of prefetch buffer. Hit rates increase upto prefetch buffer size of 8 and

beyond 8 respond to icnreasing buffer size with very slow increase.

Fig 6: GZIP application with varying Miss history table size and

prefetch buffer size of 32. X axis plots prefetch buffer size. Y axis shows

% hit rates of prefetch buffer. Increasing History Table size produces

higher hit rates for given prefetch buffer size.

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 16

Figures 7, 8, 9 and 10 show the results obtained from the

simulation when trace generated by GCC application was used

as an input to the simulator.

As seen from figure 7 and figure 8 as we increase the

prefetch buffer size for a fixed miss history table size we get

more hits in the prefetch buffer.A larger size allows the

prefetch buffer to retain the prefetched blocks longer and

hence it reduces any misses that occurred due to smaller

capacity in the prefetch buffer.

Another observation from the figures is that Instruction

Read Accesses produce best hit rates in the prefetch buffer as

compared to other types. This means Markov prefetcher

captures the locality of reference in Instruction read type of

accesses better for the case of GCC application. In fact as seen

from Fig. 7 and fig 8 only Instruction read type of accesses

responds to increased prefetch buffer size with increasing hit

rates.

Fig. 10 is plot of hit rates for varying miss history table

sizes. Miss history table size of four does not produce any

usable results with any prefetch buffer size but as we increase

this Miss history table size we see more and more hits in the

prefetch buffer. This increase in miss history table size means

more history is captured and it allows better prediction results

from the Markov prefetcher.

It is seen from the Fig. 10 that only Instruction Read

Accesses respond to increasing history table size thus we can

see that Markov prefetcher captures locality of reference in

insturction read access stream from the GCC application. It

can be also stated that GCC application does not exhibit a

locality of reference in Data Read and Write Accesses. This

fact seems logical when we consider that GCC trace has the

memory references of a complier which runs a set of

instructions again and again to compile a program. Hence

instructions executed by the processor will be same but they

will operate on different datasets. That is the reason why hit

rate for data accesses does not increase with prefetch buffer

size. From this observation we can also say that GCC’s L1

miss stream does not exhibit much locality that can be

captured by our Markov modeled prefetching.

 Apart from Instruction Read accesses other accesses do not

respond to increase in buffer size. Thus increasing buffer size

does not give us sufficient improvement in hit rate and returns

on hardware investment are diminishing. Looking at Fig. 10

for varying table sizes we observe that increasing history table

size from 4 to 32 leads to better hit rates by around three times

for Instruction Read Accesses but at table size of 128 results

do not get any better so we can say that table size of 32*4 is a

modest choice for GCC application.

 Figures 11, 12, 13 and 14 show results obtained for

simulation when trace generated by Random program

application was used as an input to the simulator. As seen from

Fig. 11, 12, 13 and 14, as we increase the prefetch buffer size

for a fixed miss history table size we get more hits in the

prefetch buffer. A larger size allows the prefetch buffer to

retain the prefetched blocks longer and hence it reduces any

misses that may have occured due to smaller capacity in the

prefetch buffer. This is specifically true for Data Read and

Write Accesses.

Fig. 7: GCC application with Miss history table size of 4*4 and varying

buffer sizes. X axis plots prefetch buffer size. Y axis shows % hit rates of

prefetch buffer. Instruction Read Data Accesses produce better hit rates with

increasing buffer size. Hit rates are very small for small history table size.

Fig. 8: GCC application with Miss history table size of 32*4 and varying

buffer sizes. X axis plots prefetch buffer size. Y axis shows % hit rates of

prefetch buffer. Hit rates for Instruction Read Accesses increases with

increaseing buffer size. Hit rates for data are very small for all buffer sizes.

Fig. 9: GCC application with Miss history table size of 128*4 and

varying buffer sizes. . X axis plots prefetch buffer size. Y axis shows %

hit rates of prefetch buffer. Hit rates for Instruction Read Accesses increase

rapidly upto buffer size of 8, beyond that increase slows down.

Fig. 10: GCC application with varying Miss history table size and

prefetch buffer size of 32. X axis plots prefetch buffer size. Y axis shows

% hit rates of prefetch buffer. Instruction Read Accesses respond with

higher hit rates to increasing History Table size.

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 17

Fig. 11: Random application with Miss history table size of 4*4 and

varying buffer sizes. X axis plots prefetch buffer size. Y axis shows % hit

rates of prefetch buffer.

Fig. 12: Random application with Miss history table size of 32*4 and

varying buffer sizes. . X axis plots prefetch buffer size. Y axis shows %

hit rates of prefetch buffer.

Fig. 13: Random application with Miss history table size of 128*4 and

varying buffer sizes. . X axis plots prefetch buffer size. Y axis shows %

hit rates of prefetch buffer.

Fig. 14: Random application with varying Miss history table size and

prefetch buffer size of 32. . X axis plots prefetch buffer size. Y axis shows

% hit rates of prefetch buffer.

For all figures of random application, Hit rates increase with prefetch buffer

size upto buffer size of 8, beyond that hit rates stabilize. Instruction Accesses

respond better to increasing buffer size.

Another observation from the figures is that Instruction

Read Accesses produce better hit rates for larger size of Miss

history table size. This fact is very evident from figure 14.

Figure 14 is plot of hit rates for varying miss history table

sizes. Miss history table size does not affect the hit rates in

prefetch buffer. This fact is evident in Data Read and Data

Write Access streams. This phenomenon can be explained if

look at type of program this random application is. This

random application creates a huge array of numbers and

performs mathematical operation on values at random array

indices. This means instructions for generating random

numbers and performing mathematical operations will be

repeated and will have more locality of reference and data

access stream will not exhibit such trend. Thus increased miss

history table size does not help data access stream.

It is seen from the figure 14 that only Instruction Read

Accesses responds to increasing history table size thus we can

see that Markov prefetcher captures locality of reference in

Instruction read access stream from the random application. It

can be also stated that random application does not exhibit a

locality of reference in Data Read and Write accesses.

IV. CONCLUSIONS

From all the above results we conclude that for a fixed Miss

History table size increasing prefetch buffer size produces

larger hit rates. This is because with increasing prefetch buffer

size we reduce the number of capacity misses occurring in

prefetch buffer. We allow the prefetch buffer to retain the

prefetched data longer before it gets evicted by new prefetches

thereby increasing the chances of getting a hit.

It can also be observed that larger Miss History table sizes

produce better hit rates in the prefetch buffer. This is due to

the fact the larger miss history table means more history will

be captured this means we have more accurate transition

probabilities for addresses and hence predictions coming from

Markov prefetcher will be more accurate.

 GZIP shows good locality of reference in accessing data as

well as instructions hence prefetcher produced best results for

GZIP. Random program showed least locality of reference in

data accesses hence prefetcher results are poor. Results for

GCC show more locality in accessing instructions and hence

more and more instructions accesses are captured by the

prefetch buffer for increasing prediction resources. Overall the

percentages of hits for GC compiler trace lie between those for

GZIP and random program.

 Looking at the results from all three applications we can

conclude that a Miss History table size of 32 * 4 and prefetch

buffer size of 8 is a good choice to improve the effective hit

rate in L1 cache for all three applications. This way we limit

the hardware cost and still reap the benefits of prefetching to

improve the effective L1 miss rate.

V. FUTURE WORK

We would like to extend our experiment to a more diverse

and complete set of applications. We are looking at SPEC

CPU 2006 benchmark for our further experiments. This will

cover a diverse set of applications and allow us test the

performance of Markov prefetching for different datasets and

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 18

gauge its effectiveness. Also, we will be able to come up with

a prefetch buffer size and a miss history table size that can

perform well across a diverse set of applications and hence can

be used on a general purpose computer.

Testing the timeliness of algorithm is the next logical step.

For that we have to use an execution driven simulator and find

the number of prefetches that were available on time for the

processor to use.

VI. REFERENCES

[1] AA Markov Extension of the law of large numbers to

dependent events Bull. Soc. Phys. Math. Kazan, 1906

[2] MD. Osman Gani, H. Sarwar, C. M. Rahman Prediction of

State of Wireless Network Using Markov and Hidden Markov

Model. Journal of Networks, 2009

[3] G.E. Bartels Markov Prediction for adaptive network memory

prefetching GE Bartels - 1998

[4] D. Joseph and D. Grunwald, Prefetching using Markov

predictors IEEE TRANSACTIONS ON COMPUTERS, VOL. 48,

NO. 2, FEBRUARY 1999

[5] N.P. Jouppi Improving direct-mapped cache performance by

the addition of a small fully-associative cache and prefetch

buffers Computer Architecture, 1990. Proceedings., 17th …,

2002 - ieeexplore.ieee.org

[6] A. Agarwal, M. Horowitz, J. Hennessey An Analytical

cache model, ACM Transactions on Computer Systems, Vol. 7,

No. 2, May 1989

[7] University of Central Florida Mathematics Department,

presentation about Markov Model. Conditional Probability

More on Markov Model

[8] JL Henning SPEC CPU2006 benchmark descriptions ACM

SIGARCH Computer Architecture News, 2006 - portal.acm.org

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 19

