
  

 

 

Abstract—Cache prefetching improves hit rates in cache 

memories. In this paper we are testing the effectiveness of 

Markov prefetching scheme based on Markov models in order to 

predict memory references that will cause a miss in L1 cache.  

Our experiments show that Markov history table size of 32 is 

sufficient and a prefetch buffer size of eight can help achieve hit 

rates of up to twenty percent in L1 miss stream depending on the 

locality of reference present in instruction and data set of the 

application. 

Index Terms—Markov model, Prefetching 

I. INTRODUCTION 

Demand fetching is commonly employed to bring the data 

from main memory to the processor as and when required for 

the processor. In contrast prefetching tries to get the data from 

the main memory before processor requests for it. Memories 

are orders of magnitude slower than processors. Predicting and 

issuing prefetches for future memory references by the 

processors is one of the many techniques employed to 

overcome this difference in the speeds. 

In this paper we are trying to test the usefulness of a 

stochastic Markov model to predict memory block addresses 

that will be prefetched. Andrei Markov proposed Markov 

model [1]. Markov property states that, if present state is 

known then we can predict the future states, irrespective of 

what the past states were. To put it in other words if present 

state is known then future and past states are independent. A 

Markov chain is a sequence of random variables with the 

Markov property. 

Markov predictors find diverse applications in computer 

science. Optimal resource allocation and higher quality of 

service is much needed requirement in case of wireless 

networks. In order to improve the above factors, intelligent 

prediction of network behavior plays a very important role. 

Gani[Et.al] show the use of Markov tools to predict the 

number of wireless devices that are connected to a specific 

instant of time[2].  Bartels uses Markov based of 

implementation of prediction by partial matching to learn and 

predict the access patterns of real applications. Further they us 

this PPM scheme for adaptive memory prefetching from disk 

to memory.[3]  

When it comes to prefetching cache blocks, Jouppi Et.al [4] 

introduced stream buffers as a significant method for improved 

direct mapped cache performance [4]. Doug Joseph Et. al [5] 

use the ground work laid by Jouppi and show that a simple 

effective and realizable Markov prefetcher can be built as an 

off-chip component. 
1miss history table: It stores history of miss addresses. It records which 

block occurred after a given block in miss stream from L1 cache. It is a LRU 

structure. A sample is shown in Table 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Memory Hierarchy and Markov prefetch engine. This figure shows 

modified memory hierarchy along with Markov prefetch engine and prefetch 

buffer. 

They compare the performance of Markov predictors with 

other prefetching schemes like static predictors, indirect 

stream predictors and correlation based prefetching, stride 

prefetchers and stream buffers. Comparison of all these models 

showed that Markov prefetcher is the best choice for 

prefetching. 

We take this idea further by implementing Markov 

prediction based prefetching scheme and try to find out best 

possible choices for how large these prefetch buffers should be 

and how much history should be stored so that Markov 

prediction model can significantly improve L1 cache miss 

rates. 

In our case the prefetcher has to predict a future memory 

reference and fetch it from the main memory before the 

processor actually asks for it. We have the current cache state 

or dataset used by the processor; if we consider a large number 

of memory references in order to be able predict the next 

address then size of miss history table
1
 becomes a huge 

overhead. Hence choosing a model that can predict the future 

only with present state independent of the future is a good 

idea. Markov model comes close to satisfying these criteria 

hence it is a good choice for address prediction. 

Fig 1 shows our experimental memory hierarchy that 

includes Markov miss-history table and a prefetch buffer
2
.To 

implement prefetching one way is to consider all the memory 

references by the processor. But that way the prefetcher will 

have to handle multiple addresses every cycle and will be 

inundated by the number of requests it has to handle.  
2Prefetch Buffer: It is an on chip buffer that holds blocks of data prefetched 

by Markov prefetch buffer. It is FIFO structure. When a miss occurs in L1 

cache this prefetch buffer is checked concurrently with L2 cache. 
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Miss 

Address 

(Current 

Miss) 

Next Miss Address Prediction 

(Most frequently used) 

A B[2] C[1] D[1] E[1] 

B D[2] A[1]   

C E[1]    

D A[3] E[1]   

E D[1] B[1]   

Table 1 Miss History table.  Miss history table populated for miss 

sequence of A-B-D-A-C-E-D-A-B-D-E-B-A-D-A-E. 
 

Also all the prefetcher hardware will be on chip making it even 

more costly. Instead we decided to prefetch based on stream of 

misses from L1 cache. This will reduce the complexity of the 

prefetcher. Fig. 1 shows the block diagram of memory 

hierarchy and where a Markov prefetcher will be placed. As 

seen from the diagram the Markov prefetch engine and history 

table are placed between L1 and L2 caches and prefetch buffer 

is placed alongside the L1 cache. 

The Markov prefetch engine monitors the stream of L1 

misses and updates miss history table .This history table then 

helps decide addresses to be prefetched into on chip buffer. 

Whenever a miss occurs in L1 cache then along with L2 cache 

prefetch buffer is checked concurrently. If the prediction 

engine is good enough then we can get more and more hits in 

the prefetch buffer. This way we reduce effective miss rate of 

the L1 cache. 

Consider following example miss address stream from L1 

cache A-B-D-A-C-E-D-A-B-D-E-B-A-D-A-E. In this 

sequence A occurs four times, B follows A twice and C and D 

once each. Probability of getting B after you get A is 50% for 

C it is 25% and D it is 25%. Now whenever the Markov 

prefetch engine sees miss reference A, It will try to prefetch B 

which is most likely. Table 1 shows the state of miss-history 

table for above mentioned stream of misses from L1 cache. 

The number inside the square bracket indicates the number of 

occurrences of that particular block after the current miss 

address.  

Prefetched blocks are stored into prefetch buffer. This 

prefetch buffer is a FIFO structure with finite number of 

entries. Whenever a miss occurs in L1 cache this prefetch 

buffer can be checked concurrently with L2 cache and if a hit 

occurs in this prefetch buffer we are reducing the L1 miss 

penalty significantly. 

Now we extend the same example to see how prediction is 

performed. We use the L1 miss stream to build a history. Here 

we basically find out which block is most likely to follow a 

certain block in the miss stream. State of the Markov table 

populated with frequently missed addresses for the sequence of 

cache misses (A,B,D,A,C,E,D,A,B,D,E,B,A,D,A,E). The 

numbers inside parenthesis denote the count value to keep 

track of the most frequently missed addresses.  

II. EXPERIMENTAL SET UP  

In our experiment we did a trace driven simulation to check 

the effectiveness of the Markov prefetcher. We generated  

 
Fig.2 Transition probabilities for example miss sequence. Transitions 

probabilities are calculated from example miss sequence and shown here. 

 

traces from three applications. The first two traces are from the 

SPECCPU 2006 benchmark [8]. They are GZIP and GCC. 

GZIP is a commonly used compression program. Here we 

have a trace of GZIP compressing a file. The compression 

algorithm shows temporal as well as spatial locality of 

reference. Second trace that we have used is that of GC 

compiler compiling a C program, Compilation trace displays 

less locality of reference in contrast with GZIP trace But is still 

uses same set of instructions to compile a piece of code and 

hence is not completely random in its memory access 

behavior.  The third trace that we used for simulation is of a 

custom program. This program creates large array of numbers, 

then calls a function to generate random numbers and uses 

these random numbers as array indices to access array 

elements. Mathematical operations are performed on these 

numbers in the array. Hence we are expecting least locality of 

reference in addresses accessed by the processor in this trace. 

Thus we have traces from three different programs that exhibit 

different amounts of locality of reference. 

In our experiment we use separate Instruction and Data 

caches at level 1. This is usually the case for most of the 

modern processors. Each cache is 32KB, Block size of 32 and 

4 way set associative. 

We gauge the effectiveness of the Markov prefetching 

strategy by monitoring L1 miss stream. For this a Markov 

history table is maintained that helps predicting the next 

address. The address is brought into a prefetch buffer and 

prefetch buffer will be checked for every miss in the L1 cache. 

Our simulator program records the number of hits in this 

prefetch buffer. We find out the percentage of hits in the 

prefetch buffer with respect to number of misses in L1 cache. 

We use this percentage of hits to quantify the effectiveness of 

prefetch strategy. 

Proceedings of 2nd Annual Conference on Theoretical and Applied Computer Science, November 2010, Stillwater, OK 15



  

Simulation is performed using a Java program. This 

program takes the trace file as its input. This trace file contains 

memory references issued by processor. Each trace file entry 

has the address of the data used and also has a field to indicate 

whether it is an Instruction Read, Data Read or Data Write. 

Depending on this classification simulator will send this 

address to L1 instruction or L1 Data cache. Simulator program 

instantiates a java class to simulate the operation of a cache. In 

our case two instances are created one for L1 instruction cache 

and another for L1 Data cache. Values for cache size block 

size and associativity of cache can be set by user. The 

simulator program reads trace file line by line and depending 

on whether it is instruction or data, it is sent to the 

corresponding cache. Whenever a miss occurs in L1 cache that 

memory reference is sent to Markov history table. Here history 

table is updated and prefetch buffer is checked. Also counts 

are maintained for hits and misses in the prefetch buffer. Every 

simulation terminates by outputting number of hits and misses 

in prefetch buffer out of total misses in L1 cache. 

In our simulation we vary two parameters; first parameter is 

prefetch buffer size. We simulate for prefetch buffer sizes 1, 

2,4,8,16,32 and 64. Second parameter that we can change is 

the history table size. We simulate for history table size of 4, 

32 and 128. Thus overall we perform 21 iterations of the 

simulation.  

III. RESULTS 

Figures 3, 4, 5 and 6 show the results obtained from the 

simulation when trace generated by GZIP application was used 

as an input to the simulator. We varied prefetch buffer size in 

powers of two up to 64 and this experiment was repeated for 

three different history table sizes 4*4, 32*4 and 128*4. 

As seen from Figure 3 and 4, for a fixed miss history table 

size hit rates increases with prefetch buffer size. A larger size 

allows the prefetch buffer to retain the prefetched blocks 

longer and hence it avoids any capacity misses.  

It is also observed that best results are obtained around the 

buffer size of eight. Any buffer size below eight produces very 

low prefetch buffer hit rate on the other hand  increasing 

prefetch buffer size beyond eight produces diminishing 

returns
3
.  

Another observation from figures is Data read Accesses 

produce best hit rates in the prefetch buffer than other types. 

This means Markov prefetcher captures locality in Data Read 

type of accesses better for the case of GZIP application. 

As seen in Figure 5 if we have a large enough Miss history 

table then for any prefetch buffer size beyond eight the hit rate 

for Data Read accesses is double than the hit rate for 

Instruction Read Accesses. 

Figure 6 is plot of hit rates for varying miss history table 

sizes. Miss history table size of four does not produce any 

usable results with any prefetch buffer size but as we increase 

this Miss history table size we see more and more hits in the 

prefetch buffer. This increase in miss history table size means 

more history is captured and it allows better prediction results 

from the Markov prefetcher. 
3Diminishing return: up to buffer size 8 increasing buffer sizes gives better hit 

rates but beyond 8 the hit rate slows down against increasing hardware costs. 

The improvement achieved does not justify the hardware cost. 

 
Fig 3: GZIP application with Miss history table size of 4*4. X axis plots 

prefetch buffer size. Y axis shows % hit rates of prefetch buffer. Figure 

shows that the History table size of 4 doesn’t  produce any usable results. 

 
Fig 4: GZIP application with Miss history table size of 32*4. X axis plots 

prefetch buffer size. Y axis shows % hit rates of prefetch buffer.  Upto 

buffer size of 8 hit rates increase with buffer size after that only Data Read 

accesses respond increased buffer size. 

 
Fig 5: GZIP application with Miss history table size of 128*4 X axis plots 

prefetch buffer size. X axis plots prefetch buffer size. Y axis shows % hit 

rates of prefetch buffer. Hit rates increase upto prefetch buffer size of 8 and 

beyond 8 respond to icnreasing buffer size with very slow increase. 

 
Fig 6: GZIP application with varying Miss history table size  and 

prefetch buffer size of 32.  X axis plots prefetch buffer size. Y axis shows 

% hit rates of prefetch buffer. Increasing History Table size produces 

higher hit rates for given prefetch buffer size. 
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Figures 7, 8, 9 and 10 show the results obtained from the 

simulation when trace generated by GCC application was used 

as an input to the simulator.  

As seen from figure 7 and figure 8 as we increase the 

prefetch buffer size for a fixed miss history table size we get 

more hits in the prefetch buffer.A larger size allows the 

prefetch buffer to retain the prefetched blocks longer and 

hence it reduces any misses that occurred due to smaller 

capacity in the prefetch buffer. 

Another observation from the figures is that Instruction 

Read Accesses produce best hit rates in the prefetch buffer as 

compared to other types. This means Markov prefetcher 

captures the locality of reference in Instruction read type of 

accesses better for the case of GCC application. In fact as seen 

from Fig. 7  and fig 8 only Instruction read type of accesses 

responds to increased prefetch buffer size with increasing hit 

rates. 

Fig. 10 is plot of hit rates for varying miss history table 

sizes. Miss history table size of four does not produce any 

usable results with any prefetch buffer size but as we increase 

this Miss history table size we see more and more hits in the 

prefetch buffer. This increase in miss history table size means 

more history is captured and it allows better prediction results 

from the Markov prefetcher. 

It is seen from the Fig. 10 that only Instruction Read 

Accesses respond to increasing history table size thus we can 

see that Markov prefetcher captures locality of reference in 

insturction read access stream from the GCC application. It 

can be also stated that GCC application does not exhibit a 

locality of reference in Data Read and Write Accesses. This 

fact seems logical when we consider that GCC trace has the 

memory references of a complier which runs a set of 

instructions again and again to compile a program. Hence 

instructions executed by the processor will be same but they 

will operate on different datasets. That is the reason why hit 

rate for data accesses does not increase with prefetch buffer 

size. From this observation we can also say that GCC’s L1 

miss stream does not exhibit much locality that can be 

captured by our Markov modeled prefetching. 

 Apart from Instruction Read accesses other accesses do not 

respond to increase in buffer size. Thus increasing buffer size 

does not give us sufficient improvement in hit rate and returns 

on hardware investment are diminishing. Looking at Fig. 10 

for varying table sizes we observe that increasing history table 

size from 4 to 32 leads to better hit rates by around three times 

for Instruction Read Accesses but at table size of 128 results 

do not get any better so we can say that table size of 32*4 is a 

modest choice for GCC application. 

 Figures 11, 12, 13 and 14 show results obtained for 

simulation when trace generated by Random program 

application was used as an input to the simulator. As seen from 

Fig. 11, 12, 13 and 14,  as we increase the prefetch buffer size 

for a fixed miss history table size we get more hits in the 

prefetch buffer. A larger size allows the prefetch buffer to 

retain the prefetched blocks longer and hence it reduces any 

misses that may have occured due to smaller capacity in the 

prefetch buffer. This is specifically true for Data Read and 

Write Accesses. 

 
Fig. 7: GCC application with Miss history table size of 4*4 and varying 

buffer sizes. X axis plots prefetch buffer size. Y axis shows % hit rates of 

prefetch buffer. Instruction Read Data Accesses produce better hit rates with 

increasing buffer size. Hit rates are very small for small history table size. 

 
Fig. 8: GCC application with Miss history table size of 32*4 and varying 

buffer sizes. X axis plots prefetch buffer size. Y axis shows % hit rates of 

prefetch buffer. Hit rates for Instruction Read Accesses increases with 

increaseing buffer size. Hit rates for data are very small for all buffer sizes. 

 
Fig. 9: GCC application with Miss history table size of 128*4 and 

varying buffer sizes. . X axis plots prefetch buffer size. Y axis shows % 

hit rates of prefetch buffer. Hit rates for Instruction Read Accesses increase 

rapidly upto buffer size of 8,  beyond that increase slows down. 

 
Fig. 10: GCC application with varying Miss history table size  and 

prefetch buffer size of 32. X axis plots prefetch buffer size. Y axis shows 

% hit rates of prefetch buffer.  Instruction Read Accesses respond with 

higher hit rates to increasing History Table size. 
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Fig. 11: Random application with Miss history table size of 4*4 and 

varying buffer sizes. X axis plots prefetch buffer size. Y axis shows % hit 

rates of prefetch buffer.  

 
Fig. 12: Random application with Miss history table size of 32*4 and 

varying buffer sizes. . X axis plots prefetch buffer size. Y axis shows % 

hit rates of prefetch buffer.  

 
Fig. 13: Random application with Miss history table size of 128*4 and 

varying buffer sizes. . X axis plots prefetch buffer size. Y axis shows % 

hit rates of prefetch buffer.  

 
Fig. 14: Random application with varying Miss history table size  and 

prefetch buffer size of 32. . X axis plots prefetch buffer size. Y axis shows 

% hit rates of prefetch buffer. 

For all figures of random application, Hit rates increase with prefetch buffer 

size upto buffer size of 8, beyond that hit rates stabilize. Instruction Accesses 

respond better to increasing buffer size. 

Another observation from the figures is that Instruction 

Read Accesses produce better hit rates for larger size of Miss 

history table size. This fact is very evident from figure 14. 

Figure 14 is plot of hit rates for varying miss history table 

sizes. Miss history table size does not affect the hit rates in 

prefetch buffer. This fact is evident in Data Read and Data 

Write Access streams. This phenomenon can be explained if 

look at type of program this random application is. This 

random application creates a huge array of numbers and 

performs mathematical operation on values at random array 

indices. This means instructions for generating random 

numbers and performing mathematical operations will be 

repeated and will have more locality of reference and data 

access stream will not exhibit such trend. Thus increased miss 

history table size does not help data access stream. 

It is seen from the figure 14 that only Instruction Read 

Accesses responds to increasing history table size thus we can 

see that Markov prefetcher captures locality of reference in 

Instruction read access stream from the random application. It 

can be also stated that random  application does not exhibit a 

locality of reference in Data Read and Write accesses. 

IV. CONCLUSIONS 

From all the above results we conclude that for a fixed Miss 

History table size increasing prefetch buffer size produces 

larger hit rates.  This is because with increasing prefetch buffer 

size we reduce the number of capacity misses occurring in 

prefetch buffer. We allow the prefetch buffer to retain the 

prefetched data longer before it gets evicted by new prefetches 

thereby increasing the chances of getting a hit. 

It can also be observed that larger Miss History table sizes 

produce better hit rates in the prefetch buffer. This is due to 

the fact the larger miss history table means more history will 

be captured this means we have more accurate transition 

probabilities for addresses and hence predictions coming from 

Markov prefetcher will be more accurate. 

 GZIP shows good locality of reference in accessing data as 

well as instructions hence prefetcher produced best results for 

GZIP. Random program showed least locality of reference in 

data accesses hence prefetcher results are poor. Results for 

GCC show more locality in accessing instructions and hence 

more and more instructions accesses are captured by the 

prefetch buffer for increasing prediction resources. Overall the 

percentages of hits for GC compiler trace lie between those for 

GZIP and random program. 

 Looking at the results from all three applications we can 

conclude that a Miss History table size of 32 * 4 and prefetch 

buffer size of 8 is a good choice to improve the effective hit 

rate in L1 cache for all three applications. This way we limit 

the hardware cost and still reap the benefits of prefetching to 

improve the effective L1 miss rate. 

V. FUTURE WORK 

We would like to extend our experiment to a more diverse 

and complete set of applications. We are looking at SPEC 

CPU 2006 benchmark for our further experiments. This will 

cover a diverse set of applications and allow us test the 

performance of Markov prefetching for different datasets and 
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gauge its effectiveness. Also, we will be able to come up with 

a prefetch buffer size and a miss history table size that can 

perform well across a diverse set of applications and hence can 

be used on a general purpose computer. 

Testing the timeliness of algorithm is the next logical step. 

For that we have to use an execution driven simulator and find 

the number of prefetches that were available on time for the 

processor to use. 
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