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Summary

The Kad network, an implementation of the Kademlia DHT protocol, supports the popular eDonkey peer-to-peer
file sharing network and has over 1 million concurrent nodes. We describe several attacks that exploit critical design
weaknesses in Kad to allow an attacker with modest resources to cause a significant fraction of all searches to fail.
We measure the cost and effectiveness of these attacks against a set of 16 000 nodes connected to the operational
Kad network. Using our large-scale simulator, DVN, we successfully scaled up to a 200 000 node experiment. We
also measure the cost of previously proposed, generic DHT attacks against the Kad network and find that our attacks
are much more cost effective. Finally, we introduce and evaluate simple mechanisms to significantly increase the
cost of these attacks. Copyright © 2009 John Wiley & Sons, Ltd.
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1. Introduction

The Kad network is a peer-to-peer distributed hash
table (DHT) based on Kademlia [1]. It supports the
growing user population of the eDonkey [2]§ file
sharing network by providing efficient distributed
keyword indexing. The Kad DHT‖ is very popular,
supporting several million concurrent users [3,4], and
as the largest deployed DHT, its dynamics has been
the subject of several recent studies [5--8].

∗Correspondence to: Peng Wang, Department of computer science, University of Minnesota, Twin Cities, MN, U.S.A.
†E-mail: pwang@cs.umn.edu
‡A previous version of this paper has appeared at SecureComm 2008.
§eDonkey is a server-based network where clients perform file searches. Kad is a decentralized P2P network. aMule/eMule are
the two most popular clients which can connect to both the eDonkey and the Kad network.

‖There are several Kademlia-based networks such as the Azureus BitTorrent DHT, but we will refer to the aMule/eMule
DHT as Kad.

DHT Security in general—the problem of ensuring
efficient and correct peer discovery despite adversarial
interference—is an important problem which has been
addressed in a number of works [9--17]. However,
the majority of these works assume a DHT with
ring topology and recursive routing; Kademlia uses a
fundamentally different, ‘multi-path’ iterative routing
algorithm as well as a different topology. To our knowl-
edge, no specific, applicable analysis of the security
properties of the Kademlia DHT or the deployed Kad
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network has appeared in the literature, despite the
potential impact of an attack on this network.

In this paper, we describe an attack on the Kad net-
work that would allow a few malicious nodes with only
modest bandwidth to effectively deny service to nearly
all of the Kad network. Our attack has two phases—
the first phase is to ‘collect routing table entries’, which
we call the preparation phase, and the second phase is
to attack queries on the Kad network, which we call
the execution phase. Having collected routing table
entries,¶ it is not obvious how to use them to halt Kad
lookups: since Kademlia is specifically designed to tol-
erate faulty routing-table entries by employing parallel
lookup, the simple attacks discussed in the literature
(such as dropping or misrouting queries [10,11]) will
not impede the majority of lookups: an attacker who
owns 50% of all routing table entries would halt at
most 34% of all Kad queries using these techniques.

We describe a new attack on the general Kademlia
search algorithm that successfully prevents an inter-
cepted query from completing, and show how to exploit
design weaknesses in Kad to further reduce the cost
of the attack. We emphasize that our attack is new
and is different from other similar attacks such as
Sybil and Eclipse attacks. However, it does rely on
basic vulnerabilities such as lack of authentication. We
experimentally evaluate the two phases of our attack
by connecting roughly 16 000 victim nodes to the live
Kad network and attacking them directly. Extrapolat-
ing from these results, we estimate that an attacker
using a single workstation with a 100 Mbps link can
collect 40% of the routing table entries in the Kad
network in less than 1 h, and prevent 75% of all key-
word lookups. We also experimented with a variant of
the attack. Instead of attacking keyword lookups, we
attacked the control plane, stopping 95% of routing
requests. Attacking the control plane is more powerful
than attacking the data plane since the latter depends
on the control plane for successful keyword search
queries.

Our evaluation methods include high fidelity simula-
tions of the Kad network on our event-based simulator
DVN (Distributed Virtual Network) of which our
largest simulation consisted of 200 000 nodes. The sim-
ulation results allowed us to quantify the effect of the
attacks on a larger scale without affecting real users in
the Kad network while running with the actual protocol
stack code ported as a library to our simulator. Thus, we
validated our new attack on the real Kad network and

¶obtaining the routing table of other nodes in the network.

for larger scale simulations, we used DVN. Both the
proposed attack and proposed simulator are important
to demonstrate the vulnerability of the Kad network.

A secondary contribution of this paper is an exper-
imental measurement of the cost of two generic DHT
attacks against the Kad network. We find that the Sybil
attack [9], which works by creating enough long-lived
identities that the attacker owns a significant fraction
of routing table entries, is significantly more expensive
than our hijacking attack, both in terms of bandwidth
and in terms of wall-clock time. We also evaluate the
cost of index poisoning [18] against Kad to ensure that
75% of all search results are incorrect (notice that this
is a weaker goal than ensuring that 75% of lookups
fail). We find that the bandwidth cost of this attack
is higher than the cost of our attack on Kademlia
lookups. Our attack is different from the Sybil attack
because we do not introduce any new identities in
the DHT. It is also different from the Eclipse attack
[19] because we actively acquire entries rather than
passively promoting compromised nodes.

Finally, we present several potential mitigation
mechanisms for increasing the cost of our attack on Kad
lookup while keeping the design choices made by the
designers of the Kad protocol. We evaluate these mech-
anisms in terms of their effectiveness and incremental
deployability. We find that a very lightweight solution
can effectively eliminate hijacking and greatly increase
the cost of lookup attacks, while having minimal impact
on the current users of Kad.

New versions of the two most popular Kad clients
have been released—aMule 2.2.1 on 11 June 2008 and
eMule 0.49a on 11 May 2008. We show that although
they have new features intended to improve security,
our attacks still work with the same resource require-
ments. We worked with the developers of eMule to
provide a simple fix for our attacks and as of eMule
0.49b [20], our attacks were mitigated.

The remainder of this paper is organized as follows.
Section 2 gives an overview of the design and vulner-
abilities of Kad. Section 3 gives further details of our
primary attack on Kad. Our simulator DVN is explained
in Section 4. Section 5 gives analytical, experimental,
and simulation results on the cost-effectiveness of our
attack. Section 6 reports on a related attack with lower
bandwidth costs in the second phase. Section 7 com-
pares our attack to general DHT attacks, while Section
8 discusses mitigation strategies for Kad. Section 9 out-
lines the recent changes in the Kad clients and how they
affect our attacks. Finally, Section 10 discusses related
work on Kad and DHT security, and Section 11 presents
our conclusions and directions for future work.
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Fig. 1. Routing table structures of (a) Kademlia and (b) Kad.
Leaves depict k-buckets.

2. Background

2.1. Overview of Kademlia and Kad

2.1.1. Kademlia

In Kademlia, every node has a unique ID uniformly
distributed in the ID space. The distance between two
nodes is the bitwise XOR of the two node IDs, the
‘XOR metric’. Every data item (i.e., a [key, value] bind-
ing) stored by the Kademlia network has a key. Keys
are also uniformly distributed in the same ID space as
node IDs. Each data item is stored by several replica
roots—nodes with IDs close to the key according to the
XOR metric.

To route query messages, every node maintains a
routing table with O(log(N)) entries, called k-buckets,
where N is the size of the network. Figure 1(a) shows a
Kademlia routing table. A k-bucket on level i contains
the contact information of up to k nodes that share
at least an i-bit prefix with the node ID of the owner.
Kademlia biases routing tables toward long-lived
contacts by placing a node in a k-bucket only if the
bucket is not full or an existing contact is offline.

Kademlia nodes use these routing tables to route
query messages in O(log(N)) steps. When node Q
queries key x, it consults its routing table and finds α

contacts from the bucket closest to x. Q consults these
contacts in parallel, which each return k of their con-
tacts. Next, Q picks the α closest contacts from this
set, repeating this procedure until it cannot find nodes
closer to x than its k closest contacts, which become
the replica roots.

2.1.2. Kad

Kad uses random 128-bit IDs. Unlike some other DHT
networks, in which nodes must generate their IDs by
applying a cryptographic hash function to their IP

and/or public key, Kad does not have any restriction
on nodes’ IDs. Unlike Kademlia, the Kad replica roots
of a data item 〈x, v〉 are nodes with an ID r such that
r ⊕ x < δ where δ is a search tolerance hard-coded in
the software; so different data items may have different
numbers of replica roots.

The routing table structure of Kad, shown in
Figure 1(b) is slightly different from Kademlia. Start-
ing from level 4, k-buckets with an index ∈ [0, 4] can
be split if a new contact is inserted in a full k-bucket,
whereas in Kademlia, only the k-buckets with index
0 can be split. Kad implementations use k-buckets of
size k = 10. The wide routing tables of Kad result in
short routing paths. Stutzbach and Rejaie [3] show that
the average routing path length is 2.7 assuming per-
fect routing tables, given the size of the current Kad
network.

Suppose A and B are Kad nodes, where B is in a k-
bucket at level i of A’s routing table. Then we say that
B is an ith level contact of A, and that A has an ith level
back-pointer to B. In Kad, any node can be a contact of
another node. Due to the symmetry of the XOR metric,
if both A and B are in the other’s routing table then they
are most likely at the same level. Also, from the routing
table owner’s point of view, a k-bucket on the ith level
covers a 1

2i fraction of the ID space. For example, the

11 k-buckets on the 4th level cover 11
16 of the ID space.

Hence, on average, 11
16 of the owner’s queries will use

contacts in these k-buckets as the first hop.
A Kad node learns about new nodes either by asking

nodes it already knows while searching, or by receiv-
ing messages from nodes. New nodes are inserted into
its routing table if the corresponding k-bucket is not
full or can be split. A node tests the liveness of its
contacts opportunistically while searching, or (if nec-
essary) periodically with HELLO REQ messages to
check if they are still alive. The testing period for a
contact is typically 2 h.

A Kad node Q looking for a particular keyword first
computes the MD4 hash of that keyword as the key
and starts a keyword search following steps shown
in Figure 2. Starting from its routing table, at each
step Q picks its three contacts closest to the key and

Fig. 2. Kad keyword search.
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sends them a KADEMLIA REQ message; these con-
tacts send KADEMLIA RES messages with additional
contacts, and the process repeats until a replica root is
located. While this query procedure is similar to that
of Kademlia, the major difference is the termination
condition. After finding a live replica root, Q sends a
SEARCH REQ message including the keyword to the
replica root, which returns many ‘matches’ to the key-
word. Q stops sending both KADEMLIA REQ (for
finding more replica roots) and SEARCH REQ (for
finding more matches) messages when it receives more
than 300 matches, even if all of the matches are returned
by a single replica root.

If all three nodes that Q contacts in a given step are
offline or simply slow, Q attempts to recover the search
as follows. For each keyword query, Q maintains a long
list of backup contacts, consisting of 50 contacts from
Q’s routing table plus unused contacts returned by inter-
mediate hops. Until a query terminates, Q will wake
up once every second and check whether the query has
received any new replies in the last 3 s; if not, it picks
the closest backup node, removes it from the list, and
sends it a KADEMLIA REQ message. After 25 s, Q
prepares to stop and will not send more requests to
intermediate hops. For example, if all nodes in the list
are offline, then Q sends 22 (25 − 3 = 22) messages to
backup contacts, before it eventually times out.

2.2. Design Vulnerabilities in Kad

Our attacks are all primarily enabled by Kad’s weak
notion of node identity and authentication. Since, as in
most file sharing networks, there is no admission con-
trol, nor any cost of creating an identity, the Sybil attack
is straightforward to implement, although we will show
that by itself this is a somewhat ineffective attack. Of
more concern is that, while IDs are persistent, there is
no verifiable binding between a host and its ID. The
design decision to support persistent IDs allows a user
to significantly reduce her startup time—recall that a
node’s routing table depends on its ID. The wall-clock
time to construct a reasonably complete routing table
is well above the median Kad session time of 7 min
reported in Reference [5], and keeping a persistent ID
and routing table for each node makes it possible to
avoid this penalty. This design also avoids complica-
tion from NAT traversal. Furthermore, it seems that the
designers chose to avoid tying a node’s ID to its IP
address to support node mobility, e.g., users who move
from wired to wireless connections or connect via a
modem pool with (consequently) varying IP addresses.
A further optimization with this approach is that a node

that goes offline at one location and comes online at
another can essentially ‘repair’ the routing table entries
it affects by doing so. Unfortunately, the decision to
create no verifiable binding between a node and its ID
make it possible for anyone to exploit the ‘repair’ oper-
ation and collect more routing table entries. In essence,
the ID of a node serves as its authentication as well;
since node IDs are public information, this predictably
leads to several attacks.

2.3. Attack Model

Our attack is designed under the assumption that
the attacker controls only end-systems and does not
require corruption or misrouting of IP-layer packets
between honest nodes. We describe our attack under
the assumption that the attacker’s goal is to degrade the
service of the Kad network, by causing a significant
fraction of all keyword as well as node searches to
fail. We also assume an attacker’s primary cost is in
bandwidth, and the attacker has enough computational
and storage resources to process messages and store
states. This is a realistic assumption since, as shown in
Section 3, processing Kad messages does not involve
expensive computations and the total amount of state
in the network is under 20 GB.

3. Attacking the Kad Network

Since we assume an attacker does not corrupt IP
communication between honest nodes, to effectively
attack keyword queries the attacker must first cause
honest nodes to send keyword queries to its malicious
nodes. Then it must make these queries fail. Thus, con-
ceptually, our attack has a preparation phase, where
the attacker poisons as many routing table entries as
it can manage, and an execution phase, where the
attacker causes queries routed through its malicious
nodes to fail. In practice, however, the execution phase
can begin in parallel with the preparation phase.

3.1. Preparation Phase

3.1.1. Crawling

Suppose an attacker controls n hosts with index
i, i ∈ [0, n − 1]. For simplicity, we assume each host
has an equal amount of bandwidth. The attacker
creates a table with tuples 〈i,IPi, porti〉. This table is
distributed to the n hosts. Then a malicious node is
started on each computer. Each node generates an ID

Copyright © 2009 John Wiley & Sons, Ltd. Security Comm. Networks. (2009)
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Mi = 2128×i
n

so that the n IDs partition the ID space
into n pieces. Next they join the Kad network and
find their neighbors in the ID space. Starting from its
neighbors, each Mi discovers nodes with IDs in the
range [Mi, Mi+1), by picking a previously discovered
node, and ‘polling’ its routing table by making
appropriate KADEMLIA REQ queries. This process
continues until Mi either fails to discover additional
nodes or finds its available bandwidth exhausted.

3.1.2. Back-pointer hijacking

In addition to polling the nodes that it discovers, after
Mi learns the routing table of node A, it also hijacks
a certain fraction of the pointers in A’s routing table
as follows. Suppose A has honest node B in its routing
table. By sending a HELLO REQ message to A claim-
ing to be from IDB, Mi can hijack this back-pointer.
This hijacking is attributable to three factors. First, Kad
does not have ID authentication and allows nodes to
pick their own IDs—this is a lack of entity authentica-
tion where the actual node is not authenticated. Second,
Kad node IDs are not specific to a node’s network loca-
tion; a node that changes its IP address will retain its ID
and update its address with HELLO REQ messages.
Third, when receiving such a HELLO REQ, A does
not verify whether B is still running at the current IP
address and port. The last two factors are due to a lack
of message authentication, that is, the messages sent
by the Kad nodes are not verified. Our attack relies on
both types of authentication failures to succeed.

After creating a false contact by hijacking a back-
pointer, it is possible that the false contact could later
be corrected by one of three methods:#

(1) If A is also in B’s routing table, and B sends a
KADEMLIA REQ or HELLO REQ to A, A will
update the pointer. To prevent this, Mi will also
hijack B’s pointer to A.

(2) If node C is one of A’s contacts, and has B as a
contact, C could include B in a KADEMLIA RES
message. This can be prevented by hijacking C’s
pointer to B as well.

(3) If node C is not one of A’s contacts, but has B as
a contact, there is a small probability that when C
is discovered as an intermediate hop, it returns B
in a KADEMLIA RES message. This scenario is
unlikely, since A already has a pointer to B’s ID, and

#In eMule, only the first scenario will result in correction of
the back-pointer.

the intermediate hops of a keyword search increase
the prefix match length unless a timeout occurs.

In our attack, Mi attempts to prevent cases (1) and
(2) above. Our experiments produced no instances of
case (3).

3.2. Execution Phase

The execution phase of our attack exploits weaknesses
in Kad’s routing algorithm to cause queries to fail when
a malicious node is used as a contact. In other DHTs,
malicious nodes can fail queries by query dropping,
misrouting queries, and/or replica root impersonation.
The Kademlia parallel routing algorithm is designed
to resist dropping, and in particular it would be coun-
terproductive for an attacker to fail to respond to a
KADEMLIA REQ , because this would cause the
querier to drop the malicious node from its routing
table. We note, however, that Kad inherits a generic
weakness from Kademlia: at each intermediate step,
the closest contacts are used to discover the next hops,
so that an attacker who knows or can impersonate arbi-
trary nodes in the ID space can ‘hijack’ the query by
returning at least α nodes that are closer to the key
than those returned by other intermediate hops. The
details of how to fail a query after this point depend on
the termination conditions of the DHT. We tested two
methods of failing a Kad query using this idea.

3.2.1. Fake matches

This attack exploits the fact that a keyword query
terminates when the querier Q receives more than
300 keyword matches in response to SEARCH REQ
messages. Thus, when a malicious node receives a
SEARCH REQ for a keyword, it can send a list of 300
bogus matches in response. Since the response list is
long enough, the querier will stop sending KADEM-
LIA REQ or SEARCH REQ messages even though it
hasn’t reached a live honest replica root yet, causing
the query to fail.

We found that this attack works with aMule and early
versions of eMule clients.** However, eMule clients
version 0.47a and later will not halt unless the matches
all correspond to the specific keyword the user used
to generate the query. Thus, to defeat this client, the
attacker must be able to ‘reverse’ the hashed key and

**At the time of writing, we used aMule 2.1.3 and eMule
0.48a.
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find the corresponding keyword. For many popular
searches, this can be done in advance by dictionary
search; however, we did not attempt to measure the
dictionary size necessary to ensure a high probability
of success with this approach.

In either case, this attack depends on malicious
nodes receiving SEARCH REQ requests before hon-
est replica roots can respond to a search. Our attack
achieves this goal as follows. Each KADEMLIA REQ
for a keyword query carries the key. Node N is a replica
root for key K if IDN ⊕ K < δ where δ is the search
tolerance. Thus for each KADEMLIA REQ received,
a malicious node can generate a contact whose ID is
a replica root. The IP and port fields are set to point
to the malicious node Mi, where i = K mod n. Upon
receiving this reply, the querier will send a KADEM-
LIA REQ to the malicious colluder Mi to find more
replica roots and to confirm that it is alive. The col-
luder Mi receives the KADEMLIA REQ and finds
i = K mod n, i.e., it is responsible for sending false
matches to the keyword. Hence it replies to show it
is alive without introducing other colluders. Receiving
this reply, the querier sends a SEARCH REQ message
to Mi, who proceeds as described above.

3.2.2. `Stale' contacts

A more efficient attack that works with all clients we
tested exploits Kad’s timeout conditions. Recall that if
all three of the closest nodes at a given step timeout,
a Kad client will find its closest backup contact, and
try to contact that node; this process repeats every
second until more live contacts are found or 25 s have
elapsed. Thus, when M receives a KADEMLIA REQ ,
it generates a KADEMLIA RES with 30 contacts. For
the ith contact, the ID is set as key − i, and the IP and
port can be set to anything not running a Kad node.
For example, they can be set to an unroutable address
or a machine targeted for a DDoS attack. Receiving
the reply from M, with high probability Q inserts
the contacts at the beginning of its list of possible
contacts since these contacts are very close to the key.
Three of them will be tried by Q immediately. Since
they don’t reply, after 3 s, Q will try one more every
second. Finally, after another 22 s, Q will stop trying
more contacts. The attack may fail if Q finds an honest
replica root before it receives the reply from M.

This attack is simple, works with high probability
against any keyword, and has a very low bandwidth
overhead—it takes one KADEMLIA RES to attack
one keyword query. After compressing, the message
contains about 128 bytes of data. Thus our attacker

simply attacks every keyword query it sees in this
manner.

4. The Distributed Virtual Network
(DVN) Simulator

Due to their distributed nature, accurate analytical mod-
eling of peer-to-peer systems such as the Kad network
has proven to be challenging. As a result, simulation
has frequently been employed, but general purpose
simulation has presented several challenges, leading
many groups to develop their own ad-hoc simula-
tors. Typical simulation strategies fall into two broad
groups—high-level and low-level simulators. High-
level simulators can scale up to hundreds of thousands
of nodes, but typically test only a high-level description
of the design. Low-level simulations may test working
code by running several instances on a single machine;
these simulations produce results that are faithful to the
implementation but are typically limited to a thousand
or fewer nodes per machine. Thus the typical choices
involve a trade-off between the scalability and fidelity
of a simulation. While DVN was developed with sim-
ulation of the Kad Network in mind, it was designed
as a general purpose packet-based simulator provid-
ing the fidelity of low-level simulators while allowing
large simulations on the order afforded by high-level
simulators.

In the evaluation of the attacks on the Kad network,
it was important to validate our attacks without dis-
rupting the actual network. We wanted to use the real
C and C++ Kad code in our simulation and scale to
large networks. To this end, we used our high fidelity
distributed DVN simulator to simultaneously run mul-
tiple modules implementing different protocol stacks
including code from the real Kad implementation and
the modified Kad attacker nodes.

We also compared DVN with WiDS [21], the
state-of-art high-fidelity network simulator that shares
numerous design characteristics with DVN. Our simu-
lator DVN surpasses WiDS in terms of simulation time
and memory usage.

4.1. Design Requirements

A simulation platform should be able to provide the
following

4.1.1. Scalability

The simulator must allow experiments consisting of
a large number of nodes and messages. There should

Copyright © 2009 John Wiley & Sons, Ltd. Security Comm. Networks. (2009)
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not be any hard limits imposed, instead, the simu-
lator should only be constrained by resource limits.
Specifically, as long as there is memory available, the
simulator should be able to instantiate new nodes and
model packets flows in the network. To support the
goal of simulating a million-node deployment, the sim-
ulator would benefit from distributed computations in
order to take advantage of multiple machines when the
resources required exceed the capacity of a single one.

4.1.2. Fidelity

The architecture should be able to run code that is
very close to the actual implementation to minimize
risks of mutation therefore bug introduction when the
actual code is implemented. Moreover, the simulator
should allow code from real implementations to be
ported from current active projects to run on it, thereby
allowing accurate modeling of the actual network. The
porting effort should be significantly smaller than
the re-implementation effort. The code designed for
the simulator should also be easily ‘exported’ so that
it can be used on a real implementation. Additionally,
the simulator should provide a means to support the
following secondary goals:
Meaningful Network Model. The architecture should
provide support for realistic network conditions,
encountered by large deployments such as non-
transitive connectivity and network partitions.
Event scheduling. In order to produce replicable exper-
iments, the simulator should support scheduling of a
series of events—such as node addition, deletion, net-
work merge or partitioning—at predetermined times.

4.1.3. Node diversity

The architecture should support nodes running multiple
versions, or with different settings, to model situations
like incrementally deployed upgrades, networks with
‘super peers’, or the effects of malicious nodes on a
network simultaneously.

4.1.4. Portability

The simulation platform should be flexible enough to
run on multiple OSes, thus allowing developers and
researchers a choice of platform better suited to their
needs.

4.2. DVN Architecture

DVN is a discrete event network simulator that offers a
scalable model for large networks with easily portable

modules for high fidelity and a scripting language
supporting heterogeneous nodes to run repeatable
experiments while facilitating the isolation of specific
variables affecting a network by tweaking individual
parameters. It can run in distributed mode, dividing
the virtual nodes evenly on different processes or even
separate machines. Fidelity is at the heart of the design
of DVN. It supports C/C++ libraries that can be built
from real implementations. Communication protocol
implementations such as eMule for Kad, need to be
ported into library modules compliant to its Simple
Network Routing Interface, SNRI. From there, cross
compiling a DVN module library into a production
application is done by using the SNRI bridge to a
real UDP/IP stack. A protocol implementation written
natively using SNRI can be crossed compiled into real
applications in a single step as well. An illustration of
the architecture is presented in Figure 3(a). The various
components of DVN are described next.

4.2.1. Core engine

The core of DVN is the event scheduler. It has a
tunable time slot granularity, typically set to one mil-
lisecond, thus all events are approximated to the nearest
millisecond. Inserting an event is done by finding the
appropriate time slot using a hash table. If there are
multiple time slots in a single hash table bucket, a min-
imum heap is used to identify the correct one. Finally,
a simple dynamic array is used to keep track of all con-
current events. DVN uses another minimum heap to
keep track of all the time slots, allowing for retrieval
of the next time slot in the order of O(log n) for n time
slots. The overall structure is shown in Figure 3(b).
For large simulations, DVN can operate in distributed
mode. The DVN master of a distributed simulation is
responsible for assigning virtual nodes to actual DVN
worker instances, each with their own event scheduler.
It then distributes the events for relevant virtual nodes
to the assigned DVN workers through the Simulation
Distributor. Each worker keeps track of local events and
communicate events that affect nodes on remote work-
ers using the underlying UDP/IP network. The master
is responsible for orchestrating the beat by sending the
start of each simulated time slot and waiting for all
workers to complete before starting the next time slot.
Each DVN worker reports the next closest time slot that
the master should propagate to the other workers. Each
DVN worker instance can load modules that contain the
implementation of the protocol in the form of a mod-
ule library. Multiple versions of the implementation can
exist for the simulation of a heterogeneous network.

Copyright © 2009 John Wiley & Sons, Ltd. Security Comm. Networks. (2009)
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Fig. 3. (a) Architecture of DVN and (b) DVN’s event scheduler.

4.2.2. DVN modules

Creating a module from the ground up is simple. A
protocol implementor can use the UDP-like datagram
messaging system to send packets to remote nodes.
To implement timeouts, the callback system is avail-
able. A packet arriving for a given node will trigger
the incoming datagram callback function to allow the
node to process it. Global variables within a module
can be safely used as long as they are registered via
SNRI, which will then allow DVN to track those vari-
ables as part of the current node’s state and swap those
in prior to running the node’s logic. Because DVN can
load more than one module in a given simulation, it
allows a user to create a heterogeneous network with
multiple variants of a protocol, or completely different
protocols for that matter. This feature is an important
tool for research in P2P security. For example, it allows
a user to measure the impact of an attack on a network
that has stabilized, as well as measure the effectiveness
of countermeasures to the attack.

4.2.3. Simple network routing interface
(SNRI)

SNRI is the interface we created that defines a simple
set of operations both inbound and outbound on any
module that is to be used with DVN. It allows the proto-
col to set callback events or send datagrams to a remote
host. When an event is triggered or a message received,
that layer makes the appropriate calls into the module
library. SNRI was designed to be simple to enable rapid
development and testing of a protocol implementation.
Using a lightweight wrapper, the protocol code could
then be deployed against a real network stack. This

allows for the identical code that would otherwise run
on a real network to be tested within the virtual network
offered by DVN.

4.2.4. Simulation description language
(DSIM)

To aid in the simulation setup, DVN provides a script-
ing language called DSIM, which is based around
Flex [22]. DSIM is a simple event-based language
used to model simulations within DVN. It describes all
components involved in a DVN simulation: network
topology, node instantiation, network events, and sim-
ulation timing. A simple language construct offering
both variable assignment and a miniature yet robust
functional set allows DVN simulations to be made
complex while their expression and description remain
simple. The DSIM options are parsed by Flex and inter-
preted by DVN. These configuration options are the
primary way that users interact with DVN. The com-
mands available range from starting nodes to specifying
network topologies and characteristics. Scripting com-
mands are available to allocate and introduce nodes into
the network by dynamically loading modules described
in the porting process above. All calls are time depen-
dent and the simulation can therefore alter network
topology at any time to simulate large-scale network
events.

4.2.5. Logging

DVN provides a central logging mechanism that can
save events in ASCII text format or binary format.
Individual modules can log events based on their
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internal states, or DVN can log events from the
simulation itself. The statistics collection methods
are left to the module developers in order to not limit
the type, frequency, and amount of data meaningful to
the analysis of the simulated network.

4.2.6. Network topology

DVN only allows modeling of the underlying network
by specifying the network delay, reliability, and
variability. Separated networks can be created at
any time during the simulation and those networks
can be connected at anytime as well. The interface
layer between the module and DVN can be used to
model arbitrary network behavior. Since DVN models
overlay networks which typically reside above the OSI
transport layer, the topology model supported by the
DSIM language is fairly simple. It provides the ability
to build subnets with independent characteristics, and
allows interconnections of those subnets with links
whose characteristics can be independently specified
as well. This model provides an adequate abstraction
to avoid burdening the user with specifying all possible
links in the system.

4.3. Porting Kad on DVN

We used aMule v2.1.3 and isolated the Kad protocol
implementation by removing the graphical user
interface and replacing system calls made to a UDP
stack with DVN functions to send and receive packets.
Since both of these network functions operate on basic
data structures, the porting was relatively simple.
All references to system time were also changed
to references to virtual DVN time. The memory
management of Kad was done using static and global

variables. This was changed to reside within a single
structure that is allocated at initialization time.

4.4. Evaluation

4.4.1. Scalability

Our test platform included a DELL PowerEgde 6950
with four dual-core AMD 8216 (2.4 GHz) CPUs and
16 GB of RAM. We ran DVN with the Kad module,
logging output serially to a file. We generated DVN
simulation (DSIM) files for 1000, 5000, 10 000, and
20 000 nodes. Each of the simulations was on a single
simulated network with 250 ms latency for message
delivery, and no dropped messages. The bootstrap set
consisted of 10 interconnected nodes. Then the rest of
the nodes were added in batches of 300 nodes at a time,
using any of the nodes in the aforementioned set as a
bootstrap node. We were able to successfully perform
simulations of 200 000 Kad nodes on this machine.
Maximum memory usage during this simulation was
10 GB or 50 KB per node. We were able to simulate 14
DVN hours in 77.4 h—a slowdown of 5.5 times. While
this is slower than realtime, it is expected for such a
large simulation.

The output logs were divided into chunks of 100
DVN seconds. The number of messages sent in each
100-s window was recorded and plotted as the simu-
lation progressed, as shown in Figure 4 (left figure).
These messages include Hello, Kademlia and Boot-
strap messages and are used for discovering the
network. The initial spike is due to the bootstrapping
nodes discovering the network. The periodic waves are
due to various routing table maintenance messages.
We also measured the amount of time required to
process each of those 100 DVN second time slots and

Fig. 4. DVN performance for 1, 5, 10, and 20 thousand Kad nodes.
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Fig. 5. Attack technique validation: (a) hijacking back-pointers and (b) attacking keyword queries.

plotted them as the simulation progresses as shown on
the graph on the right. It is clear that the processing
time is directly proportional to the number of mes-
sages being transmitted within the system. The number
of messages is directly proportional to the number of
nodes being simulated. Message transmission events
are visible only when large traffic spikes are observed
and those become the dominant factor affecting net-
work performance.

The overhead incurred by the DVN simulator is
relatively small compared to the resource consumption
of the actual Kad nodes. The actual DVN architecture
requires less than 30 MB. The rest of DVN’s memory
consumption depends on the network traffic, since
the scheduler will need to hold on to the packets
until delivery. Therefore, the memory requirement is
dependent on the number of packets and the size of
those packets. In our overhead estimation experiments,
we ran between 1000 and 1500 nodes at 100 nodes
increase per experiment. The memory consumption on
the heap was noted for each experiment. We were able
to estimate that the memory consumption for each
Kad node on a small simulation was about 165 KB.
The complete resulting overhead of DVN including
memory used to hold all messages during transit was
found to be less than 30%.

4.4.2. aMule on DVN

To verify the correctness of DVN, we compared the
network behavior of the Kad nodes running on DVN
and the ones running in a real network. In this exper-
iment, we ran 3000 virtual nodes for 2 h on DVN and
in parallel, 3000 Kad nodes on a separate testbed (call
it itlabs), consisting of 14 actual machines. Figure 5

shows the number of lookup messages†† sent in 1 min
window. The DVN Kad nodes and itlabs Kad nodes
exhibit the same behavior.

We also compare the memory footprint between
running a Kad node on a normal machine and running
it on DVN. 1000 nodes are created in DVN and run for
30 DVN minutes. At the peak of the traffic (Figure 4)
at time 200 s, the virtual memory usage for DVN
was 43.1 MB. The same experiment was performed,
deploying 1000 Kad nodes on a single machine and
letting them run for 30 min. At the peak of the traffic,
each Kad node was using about 1.5 MB. Thus, 1000
Kad nodes deployed on a single machine will use
1.5 GB of virtual memory.

4.4.3. Symmetric links

A symmetric link is where node A has node B in its
routing table and node B also has A in its routing table.
We want to know the percentage of symmetric links in
a Kad node’s routing table. This allows us to determine
whether the Kad network is symmetric or asymmet-
ric. We expect that the Kad network, due to its design,
would be mostly symmetric, because each node would
be added in the same bucket at the appropriate level of
the routing table.

Finding the number of symmetric links in a rout-
ing table involved having access to both a node, its
routing table, and the nodes in the routing table. This
would be hard to evaluate on the real network as we did
not control all the nodes; our real deployment is lim-
ited to 16 000 nodes. Crawling the whole Kad network

††These lookup messages are used to maintain nodes routing
tables.
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and polling every node’s routing table is possible but
would involve a substantial bandwidth cost and would
not result in an instantaneous snapshot of the network,
since it would take on the order of 1 h at 100 Mbps to
poll every node’s routing table. By that time, the earlier
nodes that were polled would have had their routing
tables changed due to churn. Moreover, deriving the
percentage of symmetric links analytically is difficult
due to its dependence on network dynamics, such as
churn. Thus, simulation was the most feasible route.
We found that the percentage of symmetric links in our
simulated environment is 53%. Thus, for a particular
node A, half of its routing table entries also have A in
their routing table.

5. Attack Evaluation

We evaluated the effectiveness and bandwidth cost of
our attack by launching the attack on a large number of
simulated victim nodes connected to the Kad network.
The victim nodes use a modified aMule client to save
resources.

5.1. Validation of Attack Techniques

We validate the effectiveness of our attack techniques
against eMule with the following experiment. We used
one victim node Q—running version 0.48a of the
eMule client—and one malicious node M. In one run of
the experiment, Q joins the Kad network and populates
its routing table. After an hour, we start the malicious
node, which tries to hijack fraction p of Q’s routing
table.‡‡ Figure 5(a) shows the experiment result where
p is set to 10, 20, and 30%. The measured percentage is
computed as f = h

c
, where h is the number of contacts

hijacked by M and c is the number of contacts polled by
M. The measured percentage is larger than the planned
percentage because the hijack code was configured to
hijack a routing table with 860 contacts. At the time
of hijacking, however, Q has only about 750 contacts
and some of the contacts are stale, so they are neither
returned by Q nor used in keyword queries.

To test the effectiveness of our attack on keyword
queries, we measured the percentage of failed key-
word queries given different percentages of contacts
hijacked. With f fraction of contacts hijacked, with
probability at least 1 − f 3, at least one hijacked contact

‡‡To simplify the discussion, p fraction of contacts in each of
Q’s k-buckets are hijacked.

should be used in a query. In the experiment, we input
a list of 50 keywords§§ to Q and count the number of
failed queries. Figure 5(b) shows that the result is close
to our expectation.

5.2. Bandwidth Usage

In our attack, bandwidth is used for three tasks: hijack-
ing back-pointers, maintaining hijacked back-pointers,
and attacking keyword queries. Assuming the worst
case for the attacker, every node is stable and its routing
table is fully populated. The Kad network has approxi-
mately one million nodes, so a fully populated routing
table has 86 k-buckets—11 k-buckets on the 4th level
and 5 k-buckets for each of the log(1 000 000) − 5 ≈
15 additional levels.

5.2.1. Hijacking back-pointers

Suppose an attacker wants to stop fraction g of the
queries of a victim, then it should hijack p = 3

√
1 − g

of the victim’s routing table. The attacker can send one
KADEMLIA REQ message to poll a k-bucket, so it
takes 86 KADEMLIA REQ messages to poll a routing
table. Then the attacker sends one HELLO REQ
message per hijacked back-pointer. So it takes
86 × 10 × p = 860 × p HELLO REQ messages to
hijack p fraction of backpointers in a routing table.‖‖
Therefore, in the preparation phase, the number of
messages and the bandwidth cost to attack g fraction
of queries sent by n Kad nodes are

Number of messages = 86 × n + 860 × 3
√

1 − g × n

(1)

Bytes in = 86 × n × 322 + 860 × 3
√

1 − g × n × 55

(2)

Bytes out = 86 × n × 63 + 860 × 3
√

1 − g × n × 55

(3)

§§The list includes popular movies, songs, singers, software,
filename extensions, etc.
‖‖To simplify the discussion, we assume the attacker hijacks
the same percent of contacts in every k-bucket of a victim.
To optimize the attack, an attacker should prefer to hijack
high level back-pointers, since high level contacts are used
more often in queries. As a special example, on average, 11

16 =
68.75% of a node’s queries use the top (4th) level contacts.
In this case, the number of messages (of all four types) and
bandwidth costs are less.
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5.2.2. Maintaining hijacked back-pointers

Kad nodes ping their contacts periodically. To maintain
hijacked back-pointers, malicious nodes must reply to
these HELLO REQ messages. The period of pinging a
contact increases and will be fixed at 2 h if the contact is
in the routing table for more than 2 h. For maintenance,
every hour, a node also sends a KADEMLIA REQ
message to fix a k-bucket, but only if the k-bucket has
eight or more empty slots. We ignore the cost of han-
dling these KADEMLIA REQ messages since they are
less frequent. It is very unlikely that a high level k-
bucket has eight or more empty slots, especially when
an attacker hijacks high level back-pointers. Hence the
number of messages and the bandwidth cost are

Number of messages per second = 860× 3
√

1 −g × n

2 × 3600

(4)

Bytes in (out) per second = 860 × 3
√

1 − g × n × 55

2 × 3600

(5)

5.2.3. Attacking keyword queries

The uplink cost to attack one keyword query is a sin-
gle 128-byte KADEMLIA RES message, while the
downlink cost is a single 63-byte KADEMLIA REQ
message. Suppose the users of the Kad network issue
w keyword queries per second, on average. The total
bandwidth cost of attacking g fraction of keyword
queries is w × g KADEMLIA RES messages per sec-
ond. Hence we estimate that the number of messages
and the bandwidth cost to attack g fraction of queries
sent by n Kad nodes are

Number of messages per second = w × g × n (6)

Bytes in per second = w × g × n × 63 (7)

Bytes out per second = w × g × n × 128 (8)

To estimate w, we joined 216 nodes with random IDs
to the Kad network, each through a different bootstrap-
ping node scattered throughout the Kad network. Every
node counted the number of keyword-search KADEM-
LIA REQ messages it received in each 1-h period and
the average was computed. This experiment ran for
24 h. The 1-h period with the highest average number

of queries resulted in 405 queries per host.¶¶ Hence we
estimate that, to attack all keyword queries of the whole
Kad network, the download bandwidth required is 7.09
megabytes per second (MBps), and upload bandwidth
required is about 14.4 MBps.

5.3. Large Scale PlanetLab Experiment

In this experiment, we use about 500 PlanetLab [23]
machines to run a large number of Kad nodes as vic-
tims, and a server in our lab to run the attackers.
The victim nodes for this experiment ran a slightly
modified aMule client: as with eMule and aMule, the
victim client has two layers—the DHT layer provides
lookup services (for keyword search, for example) to
the application layer, which handles functions like file
publishing and retrieval. The DHT layer was largely
unmodified. It follows the same protocols for maintain-
ing routing tables and parallel iterative routing as eMule
and aMule, and uses the same system parameters, e.g,
time interval between HELLO REQ messages. In the
application layer, the modified client issues random
keyword queries periodically.

During the experiment, about 25 000 victim nodes
bootstrapped from 2000 different normal Kad nodes.
If it fails to bootstrap, a victim node exits without
issuing any keyword queries. In our experiments,
11 303–16 105 nodes bootstrapped successfully. After
a successful bootstrap, each node sends a message to
the attacker registering as a victim. In the next 2 h,
the victims build their routing tables and help other
normal Kad nodes route KADEMLIA REQ messages.
After that, each victim sends 200 queries, one every
9 s, and exits 5 min after sending the last query. The
attacker starts at the same time as the victims. It
listens for registration messages, and starts to hijack
the routing tables of victims after 1.5 h, then attacks
every keyword query. The attack run for 1 h (half
hour for hijacking, half hour for attacking queries).
To avoid attacking normal Kad nodes, the victims do
not provide the attacker as a contact to normal Kad
nodes.

Figure 6(a) shows the comparison between expected
and measured keyword query failures, where we say
a query fails if the victim does not find any normal
Kad nodes within the search tolerance of the tar-
get ID. In the 10, 20, and 30% cases, the measured

¶¶Although the average number of query messages was mea-
sured during a short period, we believe this is sufficient to
show the order of magnitude of the bandwidth required for
our attack.

Copyright © 2009 John Wiley & Sons, Ltd. Security Comm. Networks. (2009)

DOI: 10.1002/sec



ATTACKING THE KAD NETWORK

Fig. 6. Large scale attack simulation: 11 303–16 105 victims and 50 attackers. In (b) and (c) the numbers of messages and
bandwidth costs are normalized based on the number of victims in each experiment: (a) query fail rate, (b) number of messages

and (c) bandwidth.

frequency is higher than the expected number. How-
ever, the difference between the measured numbers
and expected numbers decreases as the percentage of
hijacked contacts increases. In the 40% case, the mea-
sured frequency is slightly lower than the expected
figure.

Figure 6(b) and (c) show the attacker’s message
and bandwidth costs. The attack cost was slightly
less than expected. To find the reason, the messages
collected are categorized into three categories: (i)
hijacking, (ii) maintenance, and (iii) routing attack, as
shown in Figure 7. The number of messages used for
hijacking (i) is close to the expectation. The difference
is mainly due to messages lost at the victim side:
one lost KADEMLIA RES results in several fewer
HELLO REQ messages. The attackers received many
fewer maintenance messages (ii) than the expectation.
This is due to the short period of the attacks: most
victims finished before maintaining their hijacked con-
tacts. In a longer term attack, the number of messages
for maintaining hijacked back-pointers should be close
to the expectation. The attackers receive more routing

messages (keyword queries) (iii) than expected. We
analyzed the logs of the attackers and found that a large
number of keyword queries are received more than
once. A victim sends multiple copies of a keyword
query to an attacker if several hijacked contacts are
used in the query. The fact that some keyword queries
are received multiple times and others are not received
suggests that the hijacking algorithm can be improved.
One way to improve is to first analyze the polled rout-
ing table, then selectively hijack contacts according
to the distance between the contacts. The number
of routing messages sent is close to the expectation
because repeated queries received in a short period are
dropped.

5.4. Large Scale Simulation

We performed large-scale simulations on DVN of
a variant of our attack with 50 000 nodes. Instead
of attacking the keyword search lookup process, we
attacked the routing process. Each of our nodes
performed a node lookup for a random Kad ID

Fig. 7. Number of messages in detail: ES, MS, ER, and MR stand for expected sent, measured sent, expected received, and
measured received, respectively. The numbers of messages are normalized based on the number of victims in each experiment:

(a) 10%; (b) 20%; (c) 30%; (d) 40%.
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every 10 min. We then performed an attack sim-
ilar to the keyword search attack, but focusing
instead on the control plane. If our attacker node
receives a KADEMLIA REQ, it replies back with 10
Kad IDs that are very close to the target ID (tar-
get+1,target+2,. . . ,target+10). These 10 results all have
the attacker’s IP address.

We did not perform this attack on the real Kad
network since we did not want to hijack real Kad nodes.
Moreover, an experiment on PlanetLab would be lim-
ited to a network size of 16 000 nodes. We were able to
scale to a much bigger network using DVN. We were
also able to show the full capability of our attack, which
focuses on the control plane, rather than the keyword
search attack which is on the data plane. Attacking the
control plane (routing requests) is more potent since
the keyword search (data plane) is dependent on suc-
cessful routing. An attacker with modest resources can
bring down the whole Kad network using this routing
attack. Finally, we were able to simulate churn. The
churn model is based on Reference [5]. We believe that
this churn model is accurate since the measurements
were performed on the real Kad network.

In our simulation, we join 50 000 nodes and 50
attacker nodes. After 15 simulated hours, the attacker
nodes start to attack the whole network by polling
every node’s routing table and hijacking 15% of it. We
evaluated the percentage of routing requests that failed.
We also evaluated the percentage of each node’s rout-
ing table which has been hijacked. Figure 8 shows the
result. As expected, the failure rate increases when the
attack starts. With 15% of the routing table hijacked,
we expect the probability of choosing a non-hijacked
contact from our routing table for the first hop to be

0.853. With an average of three hops for each node
ID lookup, the probability of contacting at least one
attacker node is (1 − (0.853)3) = 77%. However,
each victim node has a 15% chance of returning at
least one attacker node. This increases the overall
probability of a victim node contacting an attacker
node to more than 90%. This is reflected in our result.
Over time, contacts from hijacked search results will
begin to populate the victims’ routing tables. This
has the net effect of increasing the overall hijacked
percentage. Our attacker nodes stay online indefinitely,
thus responding to all requests. The initial hijacking
spreads to other nodes because the hijacked victim
nodes will occasionally reply to KADEMLIA REQ
with the attacker’s IP address.

With only 0.1% of the network being malicious,
and hijacking only 15% of every node’s routing
table, almost every routing request is hijacked. This
effectively brings the whole Kad network down as
without successful routing, a P2P network is not
able to function. We want to stress that the crawling,
polling, and hijacking can be performed in parallel
and over time, that is, every node’s routing table does
not have to be hijacked at the same time. This reduces
the load on the attacker nodes. Moreover, the spread
of the initial hijacking spreads over time. Thus, an
even smaller percentage of initial hijacking can be
performed and as long as the malicious nodes stay
online, other nodes will get ‘hijacked’ as well. We only
show simulation results with 15% of initial routing
table hijacking, but the same result was obtained with
varying hijacking percentages. We were able to only
perform simulations with 50 000 nodes due to the
simulation running six times slower than real time.

Fig. 8. (a) Control-plane attack with 50 000 nodes and initial routing table hijacking of 15% and (b) reflection attack with 50 000
nodes indicating % routing table hijacked.
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Fig. 9. (a) Average hijacked and total contacts over time and (b) % successful queries, over 20-min windows.

6. Reflection Attack

The major disadvantage of the proposed attack is that
it has an ongoing cost of around 100 Mbps. How-
ever, a slight twist on this attack involves hijacking
a node’s entire routing table so that the entries in the
routing table point to the victim itself rather than to
the attacker—we call this the reflection attack.*** This
greatly reduces the ongoing cost of the attack, while
leaving the victim unable to contact any other Kad
nodes. Since a node does not perform any check on
an IP address and port to determine whether it is its
own, a hijacked node will continue to send messages
to itself and reply to itself, so that most of the routing
table remains hijacked indefinitely.

Although the attack will render the network nearly
inoperable at the time it is perpetrated, we expect that
the Kad network will slowly recover over time, for
a number of reasons. First, there will be some nodes
offline at the time of the attack, who are in the routing
tables of online nodes. When these nodes rejoin the
network and send HELLO REQ messages to their
contacts, their routing table entries will be restored.
Second, there will be a few contacts in a node’s routing
table that cannot be hijacked: each node classifies
contacts into one of five types, 0-4. Nodes with type
0-2 (which we will call in aggregate ‘Type 2’) have
successfully responded to multiple KADEMLIA REQ
or HELLO REQ messages; those with type 3 are

***It can be argued that a simple check can be performed by
every node so that their entries are not themselves, but this is a
proof of concept and UDP spoofing can easily be performed
by the attacker to have two nodes A and B’s routing table
entries point to each other.

‘new contacts’ that have not yet replied to a request;
and nodes with type 4 have failed to reply to a recent
request. When responding to the requests of others,
a Kad node will only send a ‘Type 2’ contact. Thus
we can only hijack the ‘Type 2’ contacts; but a few
type 3 or 4 contacts may later reply to the node and
be promoted. Thus it may be necessary to repeat the
process periodically to limit the network’s recovery.

6.1. Reflection Experiment

We deployed and tested a small scale evaluation of this
type of attack and found it to be highly successful. The
experiment was set up with 48 victim nodes deployed
across three machines, each victim node bootstrapping
from a different node in the real Kad network. Once
bootstrapping is complete and after waiting for 5 min,
each victim will send a HELLO REQ to the attacker
node. After waiting 2 h (to allow the victim nodes to
stabilize their routing tables) the attacker starts the
hijacking attack. It will poll the routing table of each
victim and hijack all received contacts. To track the rate
of recovery, the victim nodes print their routing tables
every 10 min. Since the victim nodes are connected to
the real Kad network we did not hijack backpointers to
the victims. It should be the case that our experiment
overestimates the rate of recovery.

Figure 9(a) shows the average number of contacts
in the routing table for the 48 victim nodes. The
number of contacts are further divided by type and
whether they were hijacked. At the beginning of the
experiment, the number of type 3 contacts is high since
all these contacts have just been discovered. As time
progresses, the number of type 3 contacts decreases,
and the number of type 2 contacts increases. After 2 h,
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the attacker starts the hijacking attack. The number of
hijacked contacts increases rapidly and then decreases
as the victims recover slowly. The number of type 2
contacts includes the number of hijacked contacts.
We can see that even after 8 h, roughly 70% of the
victim’s contacts still point back to itself. These results
suggest that at the full network scale, a second round
of hijacking may be sufficient to fully disconnect
Kad.

We also measured how the query success rate of the
victims changed over the course of the attack. Starting
6 min after bootstrapping, each victim sent a query to
a randomly chosen key once every 3 min, and recorded
whether it successfully located a replica root for the
key. Figure 9(b) shows the results of this experiment.
We can see that the fraction of successful queries is
essentially equal to the fraction of non-hijacked ‘Type
2’ contacts. In the full attack, the contacts of these nodes
would also be useless, so this experiment understates
the impact of the attack.

Finally, we recorded the cost, in bytes sent and
received, of the attack. The total number of bytes per
victim sent by the attacker was 52 718, and the total
number of bytes per victim received by the attacker was
74 992. Thus an attacker with 166 Mbps of downlink
capacity and 117 Mbps uplink capacity could complete
the reflection attack on the entire Kad network in 1 h,
with very little subsequent bandwidth usage.

6.2. Reflection Simulation

Using DVN, we ran a simulation of our reflection attack
with 50 000 nodes. At time 15 h all nodes which are
online (about 50% of the network—the rest of the
network has churned out) have their routing tables com-
pletely hijacked, such that all entries contain their own
IP address. As the non-attacked nodes churn back in,
they will fix these entries since the attacker nodes leave
the network after the initial hijacking. The routing table
rate of recovery for those attacked nodes is shown in
Figure 8(b).

The rate of recovery is faster than our experiments
because at the time the attack took place, only 25 000
nodes (out of 50 000 nodes) were online and were
attacked. The rest of the network was not attacked.
When those nodes come back online, they will start
sending a HELLO REQ to the nodes in its routing table,
so that it can determine the liveness of the entries in its
routing table. Thus, the routing table entries will get
fixed. In our experiments from Section 6.1, the real
Kad nodes are most likely still alive and will not send
a HELLO REQ to the victim nodes, thus the rout-

ing table takes longer to fix. On average, each node
will send a HELLO REQ to an entry in its routing
table every 4 h. Since 50% of the routing tables in
the Kad network are symmetric (Section 4.4.3, churn
helps the network to recover. This is why the rate of
recovery in our simulation is faster than for our exper-
iments. Moreover, the routing tables of those nodes
that were originally attacked but churned out, are still
hijacked and will take much longer to be repaired,
since those nodes are no longer in other peers’ routing
tables.

7. Comparison to Other Attacks

In this section, we discuss and evaluate several alter-
native attacks on Kad that rely on similar weaknesses,
and present techniques to mitigate these attacks.

7.1. Sybil Attack

Because P2P file sharing systems lack any form of
admission control, they are always vulnerable to some
form of Sybil attack. A Sybil attack on a P2P routing
protocol is used to collect back-pointers, which are used
to attract query messages. Therefore, the effectiveness
of a Sybil attack can be computed from the set of back-
pointers collected by the Sybil nodes. In a measurement
study, we joined 28 Sybil nodes to the Kad network.
These Sybil nodes were modified to record informa-
tion about their back-pointers, while maintaining their
routing tables and responding to KADEMLIA REQ
messages normally. We identified back-pointers to a
Sybil node S as follows. Normal nodes find out if their
contacts are alive or not by sending HELLO REQ or
KADEMLIA REQ messages before their expiration
time. Since the longest expiration time of a contact
is 2 h, S keeps a list of the nodes that have sent it a
KADEMLIA REQ or HELLO REQ message in the
past 2 h. At the same time, periodically, S sends a
KADEMLIA REQ message to every node B on this list
with its nodeID (S) as the target key. If B’s KADEM-
LIA RES includes S, then it knows that it is on B’s
routing table.

In Figure 10(a), we see that, on average, a Sybil
node collects about 500 back-pointers after 24 h, and
about 1400 back-pointers after 1 week (168 h). The
fraction of queries a Sybil node receives from a back-
pointer depend on the common prefix length (CPL)
between the Sybil node’s ID and the back-pointer’s ID,
because the CPL determines the Sybil node’s contact
level on the back-pointer’s routing table.
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Fig. 10. Sybil attack measurement: 28 Sybil nodes run for 1 week. (a) Total: it shows the total number of back-pointers. One
line represents one node. (b) Average, clustered by CPL: it shows the average number of back-pointers clustered by the common
prefix length (CPL) between the Sybil node’s ID and the back-pointer’s ID. (c) Effectiveness: it shows the average of Sybil

nodes’ effectiveness computed with formula (9).

Figure 10(b) shows that, the number of back-pointers
with CPL ≥ 15 quickly becomes stable at approxi-
mately 50. After 40 h, the number of back-pointers
with CPL ∈ [10, 14] is stable at approximately 200.
Assuming node IDs are uniformly random, on aver-
age, there are approximately 1000 ( 1

210 × 1 000 000)

nodes with CPL ≥ 10. The Sybil nodes are on 1
4

of these 1000 nodes’ routing tables. The number of
back-pointers with shorter CPL keeps increasing since
there are more potential candidates. The early hours
of Figure 10(b) also show that, initially, the number
of back-pointers with CPL ≤ 4 increases slower than
others. This is because nodes’ high level k-buckets are
usually full, so it takes more time for Sybil nodes to
become high level contacts.

We consider a Sybil node to be completely part
of the Kad network if it attracts as many queries
as a stable, honest node.††† Thus, both Sybil and
normal nodes should have the same number of ith
level back-pointers, where i ∈ [0, log(N)) (Note that
higher level contacts are used more frequently than
lower-level ones). Since on average, the number of
contacts and the number of back-pointers of a node are
the same, we say a Sybil node has successfully joined
the Kad network if it has approximately 11 × 10 4th
level back-pointers and 5 × 10 ith level back-pointers
where i ∈ [5, log(N)). Following this argument, we
compute the effectiveness of a Sybil node (how many
stable nodes it is equivalent to) as follows, assuming
it has m back-pointers with CPLi, i ∈ [1, m]:

†††New nodes that just joined the network are not included.

effectiveness =
m∑

i=1

αi, (9)

where αi =




1

160
if CPLi = 0

1

160
× 0.8 × 1

2CPLi−1 else

Figure 10(b) shows that the effectiveness of a
Sybil node reaches 1 after approximately 24 h. Then,
the effectiveness increases linearly and reaches 3.5
after 162 h (almost a week). A linear regression with
intercept 0 gives the slope of this line as 0.02 effective
nodes per Sybil node-hour, with p-value 0.014 and
mean squared error 0.12. Thus we estimate that, to
control 40% of the backpointers in Kad, a naı̈ve Sybil
attack will require roughly 400 000/0.02 = 20 million
Sybil node-hours. Clearly backpointer hijacking dra-
matically reduces the wall-clock time and bandwidth
expenditure necessary to attack Kad.

7.2. Index Poisoning Attack

In the index poisoning attack [18], an adversary inserts
massive numbers of bogus bindings between targeted
keywords and nonexistent files. The goal is that when
a user searches for a file, she will find as many or
more bogus bindings as bindings to actual files. For
instance, if there is a bogus finding for every legit-
imate binding, then 50% of her search results are
useless; if there are three bogus bindings for every
legitimate binding, then 75% of her search results are
useless.
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This attack can also be applied to deny access to the
keyword search service provided by Kad, by targeting
all existing (keyword, file) pairs. As with our attack, this
attack would involve two phases: a preparation phase
in which the attacker infiltrates the network to learn all
possible (keyword, file) pairs and an execution phase
to insert three bogus (keyword, file’) pairs for every
pair in the network. Thus the bandwidth complexity of
the attack depends on the number of bindings currently
in the network and the rate at which bindings must be
refreshed.

To estimate the number of (keyword, file) bindings in
the Kad network, we joined 256 nodes with uniformly
distributed IDs to the live Kad network, and recorded
all ‘publish’ messages received by each node for
one 24-h period. Each publish messages is a binding
between a (hashed) keyword, a (hashed) file, and some
meta-information such as the file name and size. To
be conservative, we ignored the meta-information and
counted only the number of unique (keyword, file)
hash pairs seen by each node. The total number of
such unique pairs seen by our 256 node sample was
2 000 000. Since the average size of publish message
seen by our sample was 163 bytes, we estimate that
publishing enough strings to cause 50% of all Kad
bindings to be bogus would require 14.74 MBps; to get
to 75% the required bandwidth is 44.22 MBps. Due to
the fact that bindings are removed after 24 h, this cost
is incurred continuously throughout the attack.

Note that this attack has a cost roughly three times the
cost of our attack, and is also much weaker: on average,
a determined user can simply try four of the bindings
returned by a poisoned keyword search and one will be
a legitimate entry. Furthermore, index poisoning does
not interfere at all with the underlying routing mech-
anism, so DHT lookups related to joins, leaves, and
routing table maintenance proceed without disruption.
Attacks based on our method affect all DHT lookups
equally.

8. Mitigation

Our attacks rely on two weaknesses in Kad: weak
identity authentication coupled with persistent IDs
allow pointer hijacking, so that we can intercept many
queries; while overaggressive routing (always contact-
ing the three closest contacts) allows us to hijack a
query once it has been intercepted. We will discuss
measures to mitigate each of these weaknesses, as well
as the extent to which they are incrementally deploy-
able.

8.1. Identity Authentication

Recall that the proposed attack is successful because
the malicious node M can hijack an arbitrary entry
in A’s routing table (say, pointing to B) by sending a
HELLO REQ to A with the fields 〈IDB, IPM, portM〉.
The attack can be mitigated through a number of means.
The simplest is to simply disregard these messages
when they would change the IP address and/or the port
of a pointer: if a node goes offline and comes back with
a different IP address and/or port, it will be dropped
from any routing tables it is on, but can retain its own
routing table.

Another lightweight mitigation technique is to ‘trust
but verify’: When A receives a HELLO REQ to update
B’s IP and port, it sends a HELLO REQ message
to 〈IPB, portB〉 to see if B is still running with the
previous IP and port. If B (or some node) replies to
the HELLO REQ , then A will not update its rout-
ing table. This solution allows nodes to retain their
routing tables across invocations, and to stay on the
routing tables of others after changing IP addresses.
On the other hand, it does not completely eliminate
hijacking: since Kad nodes have high churn rates, it
is likely that many entries on A’s routing table will
be offline, and M can effectively hijack these entries.
However, the cost of the attack now increases as M
will expend time and bandwidth looking for offline
contacts. Both this technique and the previous one are
fully incrementally deployable in that a client using
these algorithms can fully interoperate with current
Kad nodes, and will be protected against having its own
routing table hijacked. However, these techniques do
not protect against hijacked intermediate contacts that
might be returned by older clients during a query, or
against Sybil attacks that claim an ID close to an expired
routing table entry.

Limited protection from Sybil attacks can be
obtained using a semi-certified identity, for example
Node B could use hash(IPB) as its node ID.‡‡‡ Here
every ID is tied with the corresponding IP address;
clients should refuse to use contacts that do not have
the proper relationship between ID and IP address. This
approach prevents routing table hijacking, and limits
the set of IDs an attacker can choose in a targeted attack.
However, it is not incrementally deployable, and does

‡‡‡Several alternatives are possible: the 64 MSBs can
be derived from hash(IPB) and the 64 LSBs from
hash(IPB‖portB) to support NAT; if subnet-level attackers are
a concern the 64 MSBs can be derived from hash(IPB/24);
etc.
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Table I. Comparison of identity authentication methods.

Method Secure Persistent ID Incremental deployable

Drop Hello with new IP/Port Yes No Yes
Verify liveness of old IP No Yes Yes
ID=hash(IP) Yes No No
ID=hash(Public Key) Yes Yes No

not support mobility: if a node changes IP addresses, it
will need to rebuild its routing table and will be dropped
from the routing table of others.

Another alternative is that node B uses hash(PKB)
as its ID, where PKB is a public key. B can then either
sign its HELLO REQ when it changes its IP and/or
port, or extra rounds (with new opcodes) can be added
to allow newer clients to authenticate node IDs, while
older clients continue to ignore the existence of this
binding. In eMule, every node already generates its
own public/private key pair, used for an incentive
mechanism similar to that of BitTorrent. This solution
allows all clients to retain their existing routing tables.
Newer clients will have only authenticated contacts on
their routing tables, while older clients will have both
types of contacts. If intermediate contacts are also
authenticated, this solution protects new clients from
hijacked intermediate contacts, but requires a critical
mass of peers running authenticated clients. It does
not prevent chosen-ID attacks, although such attacks
will carry higher computational costs due to the need
to generate public keys that hash to a chosen ID
prefix.

Table I summarizes the methods discussed above.
Since a mitigation method must be secure and incre-
mentally deployable, ‘Drop HELLO REQ with new
IP’ becomes the winner. In addition, this method does
not change the behavior of the Kad network. To support
this argument, we conducted an experiment recording
the frequency of HELLO REQ messages with a new
IP address and/or port. We joined 214 nodes to the Kad
network and recorded every HELLO REQ with new
IP and/or port. After 4.5 days, on average, each node
had 5284 different contacts, of which only 171 contacts
(3.23%) were updated with a new IP and/or port.

8.2. Routing Corruption

Without some defense against Sybil attacks, routing
attacks are still possible even with the above mitiga-
tion mechanisms. Recall that routing attacks work in
Kad because although every node performs three par-
allel lookups, those lookups are not independent. If

node A wants to perform a search, it will send out
three KADEMLIA REQ to the closest nodes ((B, C,
and malicious node M) to the target T (in the XOR
metric) that A knows about. M can ‘hijack’ all three
search threads by replying to A with at least three
contacts that are close to T. This can be mitigated by
keeping the strands of a search separate: at each stage
of the search, A should send a KADEMLIA REQ to
the closest contact it has not yet used in each strand.
Note that it is possible that a thread of the lookup might
‘dead-end’. In this case, A should restart the thread from
the earliest unused contact in another thread. A should
not terminate a search until it has received a reply to a
SEARCH REQ or timed out in each thread.

This routing algorithm mitigates, but does not
eliminate, the effects of routing attacks. Suppose that
an attacker controls 40% of all of the backpointers in
the current Kad network; then he should be able to pre-
vent roughly 98% of all queries from succeeding, under
the current routing algorithm—he has a 78% chance of
stopping the query at each hop—but could prevent only
45% of queries made with the ‘independent thread’
routing algorithm. At 10% of backpointers, these fig-
ures become 59.5 and 1.7%, respectively. We thus
conclude that this technique is easy to incrementally
deploy (and will immediately improve attack resistance
for any client that upgrades), and that it is critically
important to implement mitigation techniques for both
weaknesses.

9. Recent Changes in Kad

New versions of both the aMule and eMule clients
have been released—aMule 2.2.1 on 11 June 2008 and
eMule 0.49a on 11 May 2008. Both clients use the same
updated version of the Kad (which we call Kad2) algo-
rithm.§§§ The main changes which affect our attacks are
described here.

§§§Both clients still support the old Kad protocol for backward
compatibility.
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Kad2 implements a flooding protection mechanism
that limits the number of messages processed from each
IP address, for example, a node can receive at most one
KADEMLIA REQ per IP address every 6 s. While this
mechanism increases the time required to poll a single
routing table, it does not increase the time required to
poll the entire network, since an attacker can contact
many nodes in parallel while not exceeding the rate
of one request per 6 s at any individual node. Also,
each Kad node limits entries in its routing table by IP
address and /24 subnet. Clearly, this change prevents
the reflection attack presented in Section 6. However, if
backpointer hijacking is still possible, an attacker who
can spoof UDP packets can still effectively partition the
network into disjoint subsets of size 900 by pointing all
of the routing table entries of each partition to the other
members of the partition.

Finally, Kad2 includes code that may be used to
prevent hijacking. The new code contains a boolean
variable which indicates whether entries in the routing
table can be updated (change in IP address). This
variable can be set to false so that the entries are never
updated and this will prevent a hijacking attack (this
is our first proposed mitigation method in Section
8—‘Drop Hello with new IP/Port’). Since this variable
is currently set to true (to reduce the number of dead
contacts and to enable long-lived nodes to continuously
contribute to the network, although our measurements
indicate that such behavior is uncommon), it does
not prevent hijacking attacks; we have empirically
confirmed this by running the Kad2 client and success-
fully hijacking a single backpointer. The clients also
implement Protocol Obfuscation [24] by encrypting
packets. A node sends different encryption keys to
different contacts in plaintext when the contacts are
inserted into its routing table, and it stores these keys
in the routing table along with the contacts’ protocol
versions. In future protocol versions, these encryption
keys could also be used to serve as authentication
tokens to prevent hijacking attacks; note that an
attacker cannot utilize clients’ backward compatibility
to bypass the authentication step because the contacts’
protocol versions are recorded in the routing table.
In this case, although it is still possible, the hijacking
attack is much harder to launch since an attacker
needs to intercept the communication between honest
nodes.

In summary, the Kad clients implement several
features which could be used in future versions to
mitigate our attack. However, that version only slightly
increases the cost of our attack. We still need only one
IP address with the same network and storage resources

to crawl the whole Kad network and collect the routing
tables of all nodes. To hijack backpointers, our attack
now requires one IP address per hijacked contact.
For example, to hijack 30% of the top level buckets
(3 out of 10 contacts in each bucket) in each routing
table (see Footnote 9)—stopping more than 60% of
queries—now requires 3 × 11 (top-level buckets) = 33
IP addresses. Note that the same 33 IP addresses can
be used for all of the hijacked backpointers since IP
filtering is done locally for each node. However, the
latest version of the eMule clients (version 0.49b and
0.49c) do implement a mitigation for our attacks, after
some discussions with the developers of eMule.

10. Related Work

Since Kademlia [1] was introduced in 2001, several
variations have been implemented, including the
discontinued Overnet and eDonkey2000 projects,
and also the separate eMule [25], aMule [26], and
MLDonkey projects. Kademlia is in use by several
popular BitTorrent clients as a distributed tracker
[27,28]. Because Kad seems to be the largest deployed
DHT, several studies have measured various properties
of the network. Steiner et al. [4] crawl the Kad network
and report that most clients only stay for a short period
and only a small percentage stay for multiple weeks;
while Stutzbach and Rejaie measured the lookup
performance [3] and churn characteristics [5] of the
deployed Kad network. None of these works address
the security of Kad.

Sit and Morris [10] present a taxonomy of attacks
on DHTs and applications built on them. They further
provide design principles to prevent them. The Sybil
attack has been studied by several groups [9,29]. Three
Sybil-resistant schemes based on social links were
recently proposed in References [30--32]. Castro et al.
[11] design a framework for secure DHT routing which
consists of secure ID generation, secure routing table
maintenance, and secure message forwarding. Fiat and
Saia [14] give a protocol for a ‘content-addressable’
network that is robust to node removal. Kubiatowicz
[15] make Pastry and Tapestry robust using wide paths,
where they add redundancy to the routing tables and
use multiple nodes for each hop. Fiat et al. [17] define
a Byzantine join attack model where an adversary can
join Byzantine nodes to a DHT and put them at chosen
places. Singh et al. [19] observe that a malicious node
launching an eclipse attack has a higher in-degree than
honest nodes. They propose a method of preventing
this attack by enforcing in-degree bounds through
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periodic anonymous distributed auditing. Condie et
al. [33] induce churn to mitigate eclipse attacks.
Naoumov et al. [34] propose to exploit Overnet as a
DDoS engine with index poisoning and the generic
routing table poisoning. El Defrawy et al. [35] propose
to misuse BitTorrent to launch DDoS attacks. While
several of these works report on DHT routing attacks,
none address Kad or Kademlia specifically, and none
are tested on a widely-deployed DHT.

Parallel and distributed simulators based on discrete
events have been developed previously [36--38] and Lin
et al. [39] observe that the core of the aforementioned
simulators is divided into two categories: conservative
and optimistic. They report that in the conservative
engines, the logical time is advanced in a coordinated
fashion, which is the same technique used by DVN
to guarantee the chronological order of events. DVN
uses a master-worker relationship similar to WiDS [39]
physical network with synchronization messages [40].
WiDS has shown valuable support for developing a
distributed protocol implementation and move it to the
real world. DVN was built to support the reverse path
where code released in the real world was ported to
a DVN module while minimizing the porting effort.
In the WiDS toolkit [21], the authors introduce Slow
Message Relaxation (SMR) as a tradeoff between per-
formance and accuracy. Given DVN’s performance on
a single machine, there was no need for such a tradeoff
and although tunable, the time granularity was fixed at
the millisecond level.

We wanted to minimize the porting effort to the
simulation platform to minimize the possibility of bug
introduction and maximizing fidelity. In that respect,
the porting effort and scalability issues in running the
Kad node on NS-2 [41] would not have been practical.
Using PDNS—Parallel/Distributed NS [42] for scala-
bility would have been possible, but it was not clear
that the performance would have been acceptable for
very large simulations in distributed mode. NS-3 [43]
pays close attention to realism where each node is a
computer’s outer shell and hosts a complete communi-
cation stack. In our experiments, we only needed the
top layers of the stack to support the application layer
where the overlay routing takes place. Therefore, we
optimized DVN by trimming out the layers under the
IP network layer. ModelNet [44] allows researchers
to run unmodified software prototypes and supports
a finer granularity of the network topology than the
description supported by DVN’s dsim language but
doesn’t scale to the sizes we needed. The SSFNet
simulator [45] is an infrastructure built in Java that can
support nodes written in Java and C++ compliant to

their API bindings. The largest documented simula-
tion containted up to 384 000 nodes [46]. However, the
authors mention that their model used approximations
of the worm infection patterns to generalize the simu-
lation at a coarse level, while only simulating parts of
the network in detail. In our simulation, we wanted to
run a full protocol implementation for the entire net-
work with hundreds of thousands of nodes for a higher
fidelity.

MACE [47] is a compiler that outputs C++ source
code from protocol specifications. The output gener-
ated could then be compiled into a DVN module once
the event callbacks and datagram network interface
are put in place. Haeberlen et al. [48] suggests that
current simulation and experiments are considering
single points in the entire possibility space. Naicken et
al. [49] analyze six simulators [50--58] along the some
of the criteria mentioned in the introduction. DVN
differs from by stripping the communication stack as
much as possible to reduce the overhead and focus
on the DHT overlay at the application laye for high
fidelity, while presenting a realistic network layer.

11. Conclusion

We have demonstrated that it is possible for a small
number of attackers, using approximately 100 Mbps of
bandwidth, to deny service to a large portion of the
Kad network. By contrast, direct DDoS to the same
number of hosts would require roughly 1 Tbps of band-
width, assuming an average downstream capacity of
1 Mbps per Kad node. Moreover, we showed that our
attacks are more efficient than currently known attacks
(Sybil and Index Poisoning). These attacks highlight
critical design weaknesses in Kad, which can be par-
tially mitigated. Even with the security updates to Kad,
we have shown that our attack still works using nearly
the same resources. However, an easy change to the
code prevents hijacking attacks in the latest version.
We have also introduced a novel large scale efficient
and high fidelity simulator, DVN, which allowed us to
simulate 200 000 nodes and other attacks which would
have been harder to measure using the real network
(without impacting the whole network), such as the
control-plane routing attack.
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