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Abstract

Bayesian networks (BNs) have been widely used as a
model for knowledge representation and probabilistic in-
ferences. However, the single probability representation
of conditional dependencies has been proven to be over-
constrained in realistic applications. Many efforts have
proposed to represent the dependencies using probability
intervals instead of single probabilities. In this paper, we
move one step further and adopt a probability distribution
schema. This results in a higher order representation of un-
certainties in a BN. We formulate probabilistic inferences in
this context and then propose a mean/covariance propaga-
tion algorithm based on the well-known junction tree prop-
agation for standard BNs [1]. For algorithm validation,
we develop a two-layered Markov likelihood weighting ap-
proach that handles high-order uncertainties and provides
“ground-truth” solutions to inferences, albeit very slowly.
Our experiments show that the mean/covariance propaga-
tion algorithm can efficiently produce high-quality solu-
tions that compare favorably to results obtained through
painstaking sampling.

1 INTRODUCTION

A Bayesian Network (BN) is a graphical representation
of a joint probability distribution over a set of variables (also
called nodes) [14]. A common critism of the BN approach
is that it requires a single probability representation for the
conditional dependencies specified by the network [13]. For
instance, if the sky is cloudy, then the probability that it will
rain may be (for example) 0.8. However, in knowledge rep-

resentation, this requirement is inadequate to represent the
complications in the real world. When an expert comes up
with a single number 0.8, he might indicate that it is a sim-
plification of a range [0.7, 0.9], or that it is a simplification
of the fact that it is a probability distribution with 0.8 as
mean and 0.1 as standard deviation. In addition, oftentimes
different experts have varying assessments of the probabili-
ties for the same application scenario. One expert can con-
clude that the aforementioned probability is 0.8, while an-
other can feel that it is too large and would suggest 0.7. Sin-
gle probability representation is insufficient for reconciling
discrepancies among a team of experts.

To extend the expressiveness of standard BNs, a concept
of higher-order uncertainty has been introduced. Semanti-
cally, a higher-order uncertainty specifies additional levels
of uncertainty beyond the probability distribution represen-
tation. For distinction, the uncertainties that can be repre-
sented by the conventional way is called first-order uncer-
tainty (FOU). For example, given the “cloudy” status, the
probabilities for “rain” and “not-rain” are single values and
sum up to 1.0. One higher-order representation is to use
interval representation. This approach has been studied by
the imprecise probability and credal network communities
[18, 5]. Under this representation, given the “cloudy” sta-
tus, both probabilities for “rain” and “not-rain” are inter-
vals. Following the interval concept, several interval prop-
agation algorithms have been developed to propagate high-
order uncertainties [17, 3, 7, 5, 6]. One limitation of interval
propagation is that even in simple situations it is not highly
informative [2]. The next section will illustrate this with an
example. In addition, even when an algorithm starts with
very narrow intervals, those generated by the algorithm of-
tentimes become too broad to be useful.
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In this paper, we propose a further extension in repre-
senting conditional dependencies. Instead of an interval,
we represent them with a probability distribution. In the
cloudy-rain example, given the “cloudy” status, the prob-
abilities for “rain” and “not-rain” are both represented as
a distribution. For instance, given that the sky is cloudy,
the probability that it rains is a distribution with a mean of
0.8 and standard deviation 0.1, while the probability that it
won’t rain is a distribution with a mean of 0.2 and standard
deviation 0.1. Such a probability distribution is an extension
to an interval distribution because an interval can be seen as
a uniform distribution bounded by the interval range. The
uncertainties represented this way are called Second-Order
Uncertainties (SOUs) or occasionally two-layer probabili-
ties.

In spite of increasing expressiveness with model exten-
sions, it becomes computationally more challenging to han-
dle BNs with SOUs. We will use FOU-BNs to denote usual
BNs, and SOU-BNs to denote BNs with SOUs. A FOU-
BN represents a single joint probability distribution. In a
FOU-BN, a probability inference p(Q = q|E = e0) is to
calculate the posterior probability that the query variable Q
is at one value (or state) q given the evidence E = e0. In
general, both Q and E can be nodes’ sets. As shown later, a
SOU-BN can be seen as a continuous set of probability dis-
tributions. Because of this, it is computationally demanding
to carry out inferences over SOU-BNs. Indeed, in a SOU-
BN, an inference p(Q = q|E = e0) refers to calculating
the probability distribution of Q = q given the evidence
E = e0. Therefore, an FOU inference calculates a prob-
ability value for a state of a variable, while an SOU infer-
ence calculates a probability distribution. Since conducting
inferences in general is a NP-hard problem in FOU-BNs
[4, 16], SOU-inferences are at least NP-hard.

Currently, no propagation algorithms for two-layer prob-
abilities are available to conduct inferences over SOU-BNs.
In this paper, we adopt the Junction Tree (JT) approach [11]
and develop a SOU-JT algorithm to propagate the second-
order uncertainties [1]. The standard JT approach clusters
nodes into cliques, connects cliques to form a junction tree,
propagates the evidences and messages throughout the tree,
and finally computes the query result. For SOU-BNs, we
design innovative procedures to conduct the message prop-
agation and query answering steps. In addition, to bal-
ance the quality and the efficiency requirements in prop-
agating two-layer probability distributions, we choose to
propagate their means and covariances. Accordingly, the
inference results will be represented by mean and variance
of p(Q = q|E = e0). The propagation algorithm is ap-
proximate in the sense that it computes only the mean and
variance of the event Q = q rather than the exact probability
distribution.

To validate the mean/covariance algorithm, we gener-

alize the likelihood weighting algorithm [8, 15] to handle
SOUs. The generalized algorithm exploits sampling tech-
niques to generate “ground-truth” results for SOU infer-
ences. We developed the sampling algorithm and used its
solutions as our reference. We justified our propagation
algorithm by demonstrating that it can efficiently generate
high-quality results.

2 RELATED WORK

To increase the expressive power of BNs, researchers
have proposed interval and two-layered probabilities for re-
alistic BN applications. Probabilistic interval representation
and relevant inferences in BNs have been widely studied in
the literature [17, 3, 7, 5, 6]. The idea is to represent the sets
of posterior probabilities as polytopes and represent a poly-
tope using its vertices’ set. At each propagation step, the
algorithm calculates the vertices representing the posteriors
of a node. Its major drawback is that the vertices’ number
grows very fast as the number of the parameters increases.
Fagiuoli and Zaffalon proposed a 2U algorithm, an exact
interval propagation method for polytrees [7]. But the 2U
algorithm applies only to single-connected BNs with binary
variables. Tessem proposed one of the earliest approximate
algorithms to propagate interval probabilities [17]. How-
ever, in this algorithm speed is achieved at the expenses of
accuracy and the interval bounds tend to diverge to [0, 1].
In addition to JT, a number of approaches exist for carrying
out inferences using mathematic programming. One exam-
ple is the MultiLinear Program (MLP) technique in credal
networks [6]. It formulates an inference as a MLP and then
solves the MLP. Its drawback is that the number of con-
straints grows explosively in the network size, and that a
MLP is still a difficult non-linear optimization problem.

As mentioned earlier, one limitation of interval propaga-
tion is its loose interval bounds [2]. As interval propagation
proceeds, the intervals generated in the algorithm quickly
become too broad. In addition, a posterior distribution is
poorly represented by an interval. Let us illustrate this using
our cloudy-rain BN example that has a link from the node
“cloudy” to “rain”. It has been shown that, even if the para-
meters representing conditional dependencies of “cloudy”
and “rain” are uniformly distributed in their ranges, the in-
terval representing a posterior probability will not be uni-
formly distributed [2]. The lack of informative power of
interval-based approaches is even more evident when the
parameters are not uniformly distributed, as shown in Fig-
ure 1. The top two charts represent the distributions of the
two received evidences for “cloudy”. The posterior distrib-
utions for one state of “rain” node is shown in the bottom
chart. We see that although the posterior distribution fea-
tures a large interval (between 0.05 and 0.88), the majority
of its distribution is confined in the [0.05, 0.40] interval. In-
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cidentally, it is well approximated by a Beta distribution.

Figure 1. An example for illustrating interval-
based propagation and mean/covariance
propagation

In spite of the numerous publications on interval prob-
abilities and inferences, there is relatively little work on
SOU-BNs that represent conditional dependencies as two-
layered probabilities as found in this paper. This is possi-
bly attributable to the computational challenges they pose.
Realizing that it might be infeasible to come up with an ex-
act method to probabilistic inferences, we develop the first
algorithm to propagate the mean and covariances of nodes
through a junction tree [1]. We specifically designed a set of
operators for SOUs. These operators are essential for prop-
agating means and covariances. For algorithm validation,
we extended the likelihood weighting algorithm to handle
SOUs and used it as a reference for our method.

3 BNs AND PROBABILISTIC INFER-
ENCES

A BN is a Directed Acyclic Graph (DAG) that repre-
sents a joint probability distribution over a set of variables
[14]. In the graph, the nodes denote the random variables
in an application, while the links denote the dependencies
among them. Quantitatively, the Conditional Probability
Table (CPT) of a node encodes the conditional distribution
of the node upon the value assignments of its parent nodes.
Let the variables’ set be X1, . . . , Xn and the parent of Xi

be πi. The joint distribution p(X1, . . . , Xn) factorizes into:
p(X1, . . . , Xn) = Πip(Xi|πi).

We use the notation pijk to denote the conditional prob-
ability p(Xi = j|πi = k) where j is a value of variable

Xi and k is a combination of the values of the parents of
Xi. Therefore, a BN can be represented by < N , {pijk} >
whereN denotes the DAG qualitative part in terms of nodes
and edges, and {pijk} denotes the quantitative part.

An inference or query p(Q = q|E = e0) is to calculate
the posterior probability distribution of a query variable Q
being at its specific value q, given evidence e0 for node E.
In general, Q and E can be sets of nodes.

JT is one of most popular inference algorithms [14]. JT
consists of four steps: clustering nodes into cliques, con-
necting the cliques to form a junction tree, propagating in-
formation in the network, and answering a query. A root
clique is the one with which an inference starts. The core
step is message propagation and consists of a message col-
lection phase and a distribution phase. In message propa-
gation, the minimum operational unit is a single message
pass. When a message is passed from one clique X to an-
other clique Y, it is mediated by the sepset S between the
two cliques. For a clique, a potential or a message is a map-
ping from value assignments of the nodes to the set [0, l.0].
Using the HUGIN architecture [12], a message pass from
X to Y occurs with two procedures: projection and absorp-
tion. The projection procedure saves the current potential
and assigns a new one to S:

φold
S ← φS and φS ←

∑
X\S

φX. (1)

The absorption procedure assigns a new potential to Y,
using both the old and the new tables of S:

φY ← φY
φS

φold
S

. (2)

The query answering step has two procedures. First, the
marginalization procedure calculates the joint probability
of Q and E = e0: p(Q, E = e0) =

∑
X\{Q} φX. Second,

the normalization procedure calculates the inference result
using:

p(Q = q|E = e0) =
p(Q = q, E = e0)∑

Q p(Q, E = e0)
. (3)

4 SOU-BNs, SOU-INFERENCES AND
SOU-POTENTIALS

We introduce SOU-BNs and probabilistic inferences and
derive the mean/covariance representation for SOU-BNs.
We will discuss probability potentials in the context of
SOUs, a fundamental concept in the SOU-JT algorithm.

4.1 SOU-BNs

An SOU-BN is a standard BN < N , pijk > where
its CPT entries pijk are probability distributions. To de-
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note pijk by a probability density, we introduce the no-
tation pijkα. For any α ∈ [0, 1.0], the quantity pijkα is
the probability of the event p(xi = j|πi = k) = α, i.e.,
pijkα = p(p(xi = j|πi = k) = α). With pijkα , the prob-
ability distribution pijk is defined by the following set of
events pijk = α and their probabilities:

{(pijk = α, pijkα)|∀α ∈ [0, 1.0]}. (4)

An SOU-BN < N , pijk > can be viewed as a probability
distribution over a set of FOU-BNs. For any FOU-BN in the
set, its CPTs are chosen from the set {pijkα}. Moreover, the
CPTs must meet the norm constraint, i.e., the probabilities
of a node conditioned on a parental assignment must sum
up to 1.

This leads to a different query semantics: a FOU-BN
query yields a single probability p(Q = q|E = e0),
whereas a SOU-BN query yields a probability distribution
of p(Q = q|E = e0) for a value of the query variable.

4.2 Mean/Covariance Representation of a BN

In the BN definition above, the CPT entries pijk are rep-
resented as distributions, usually as (continuous) probabil-
ity densities. The representation needs a large amount of
memory if the distribution is irregular. To provide a com-
pact representation of a SOU-BN, we define the mean and
covariance for all CPTs [1]. Although this representation is
an approximation of an SOU-BN, it results in tremendous
savings but still preserves the first two-order statistics of a
BN, namely its mean and (co)variances. As shown in Fig-
ure 1, an approximate Beta distribution, determined using
mean and variance estimates, can fit an actual posterior dis-
tribution.

Given a CPT entry pijk in a SOU-BN, we can define its
mean and variance as follows:

µijk =
∫

α

pijkααdα,

σ2
ijk =

∫
α

pijkα(α − µijk)2dα.

The covariances depict the relationship among differ-
ent values given a node and its parents. The covariance
σ2

i<j1,j2>k is defined as follows:

σ2
i<j1,j2>k =

∫
α

∫
β

pij1kαpij2kβ(α− µij1k)(β − µij2k)dαdβ.

The goal of an inference p(Q = q|E = e0) is to compute a
mean and a variance of the probability distribution of Q = q
given evidence e0.

4.3 SOU POTENTIALS

A potential is defined over a set X of variables
X1, . . . , Xn. We will use X1:n to represent (X1, . . . , Xn)
and x1:n to indicate an assignment to it. The potential de-
fined over the set can be denoted by φX or φ(X1:n). In
SOU-BNs, a potential has to be interpreted differently from
FOU-BNs.

For each value assignment of all variables, the notation
φ(x1:n) can be understood as a set of real numbers. In-
tuitively, one can think of φ(x1:n) as a probability distri-
bution that consists of probability masses φ(x1:n; α) over
any α ∈ [0, 1]. For each α ∈ [0, 1], φ(x1:n; α) specifies
the probability that the entry φ(x1:n) is equal to α, i.e.,
φ(x1:n; α) = p(φ(X1:n = x1:n) = α).

With this notation, given a potential φ(X1:n), its mean
value at x1:n is:

µφ(x1:n) =
∫

φ(x1:n; α)αdα

and its variance at x1:n is

σ2
φ(x1:n) =

∫
φ(x1:n; α)(α− µφ(x1:n))2dα.

The covariance for two different instantiations x1:n and
x′

1:n of the variables’ set {X1:n} is

σ2
φ(x1:n; x′

1:n) =
∫

α

∫
β

φ(x1:n; α)φ(x′
1:n; β)

(α− µφ(x1:n))(β − µφ(x′
1:n))dαdβ

where α and β can be any number in [0, 1].
Note that if x1:n = x′

1:n, the covariance σ2
φ(x1:n; x′

1:n)
is actually the variance σ2

φ(x1:n). Note also that the CPTs
for a variable are examples of potentials. In fact, the CPT
potential of a variable is defined over the set of the variable
and its parents.

5 JUNCTION TREE PROPAGATION

The proposed SOU Junction Tree (SOU-JT) algorithm
parallels the standard JT for FOU-BNs [9]. Just like FOU-
JT, SOU-JT proceeds in four steps: construct a junction
tree, initialize the tree, conduct message passing via global
propagation, and generate the query results [1]. The junc-
tion tree construction step is identical to the FOU case. In
the rest of this section, we discuss the remaining three steps.
For each step, we first discuss the operations and then the
operators that implement them. Throughout our discus-
sions, we only introduce the definitions of the operators.
We defer our derivations and all proofs to a longer version
of this paper [19].
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5.1 Junction Tree Initialization

The tree initialization sets up the initial potentials for the
cliques. In particular, the initial potentials and evidences are
assigned to the cliques. Then, within each clique, these po-
tentials are multiplied together to form one single potential.
The initialization step proceeds as follows [1]:

1. For each cluster X and sepset S, set its mean matrix
to be 1.0 and its covariance matrix to be 0.0. That is,
µφX ← 1.0, and σ2

φX
← 0.0.

2. For each variable X , assign it to a cluster X that con-
tains the node and all its parents. Such a cluster is the
parental cluster of X .

3. For each evidence variable E, identify a cluster that
contains E and attach a potential λE to the clique.

4. For each clique, perform the multiplication opera-
tions over the current potential φX, the CPT potentials
p(X |π(X)) for all assigned Xs, and the evidence po-
tential λE attached in the clique:

φX ← φXΠXp(X |π(X))ΠEλE

where ΠX is over all the nodes whose CPTs are attached
to the clique and ΠE is over all available evidences. The
multiplication operator is defined in the next section.

5.1.1 Multiplication Operator

The multiplication operator acts on a number of potentials
f1,. . .,fn. Each fi is represented by a mean matrix and a
covariance matrix. The operator returns a potential repre-
sented by a mean matrix and a covariance matrix. We as-
sume that fis have the same domain 1.

We first consider the two-potential multiplication. Let
the two potentials be g and h. Let the variables’ set be
{X1:n}, the mean matrix and the covariance matrix be
µg(µh) and σ2

g (σ2
h), the resulting potential be gh. Then the

mean matrix µgh is [1]:

µgh(x1:n) = µg(x1:n)µh(x1:n) (5)

The covariance matrix σ2
gh is [1]:

σ2
gh(x1:n; x′

1:n) = σ2
g(x1:n; x′

1:n)σ2
h(x1:n; x′

1:n)
+µh(x1:n) µh(x′

1:n)σ2
g(x1:n; x′

1:n)
+µg(x1:n)µg(x′

1:n)σ2
h(x1:n; x′

1:n).
(6)

Equations (5) holds because the various CPTs in a BN
are independent. Indeed, Equation (5) can be verified using

1If fi has a different domain from another fj , we can apply the exten-
sion operator, introduced in the next section, to them and then carry out
multiplications in an unified domain.

a Taylor expansion. Equation (6) can be derived by expand-
ing the covariance of gh at (x1:n; x′

1:n) considering that g
and h are independent because each CPT appears exactly in
one clique.

Additionally, we have proven the following results: (1) If
the matrices σ2

g and σ2
h are symmetric, so is the covariance

matrix σ2
gh; (2) The resulting covariance matrix σ2

gh is in-
dependent of the multiplication order among the potentials;
and (3) The multiplication operator is associative. The first
result can be used to achieve computational savings, while
the others can be used in multiplying more than two poten-
tials.

5.1.2 Extension Operator

When the multiplication operator (and the division oper-
ator discussed later) acts on two potentials that have dif-
ferent sets of variables, an extension operator is needed
to unify their domains. Given a potential φ(X1:n) ( with
mean µφ and covariances σ2

φ) and a set of variables {Y1:m},
the extension of the potential φ(X1, . . . , Xn) to include
Y1:m is the potential φ(X1:n, Y1:m). For any assignment
(x1:n, y1:m) to (X1:n, Y1:m), the mean is defined as [1]:

µφ(x1:n, y1:m) = µφ(x1:n).

For any (x1:n, y1:m; x′
1:n, y′

1:m), its covariance is defined as
[1]:

σ2
φ(x1:n, y1:m; x′

1:n, y′
1:m) = σ2

φ(x1:n; x′
1:n).

By definition, if the extended potential is projected back
to the original domain space, the result is the same as the
original potential.

5.2 Global Message Propagation

In this step, as in standard JT, we choose a root clique to
direct the global message passing. The ordering among the
cliques are the same as in standard JT. We will concentrate
on a single message passing step here.

There are two steps in computing the mean and covari-
ance matrices for the sepset and the clique that receives a
message [1]. In projection, Equation (1) is achieved by a
sum-out operator. In absorption, Equation (2) is achieved
by a combination of a multiplication and division operator.
Since the multiplication operator has been defined in the
preceding subsection, we will define a sum-out and a divi-
sion operator.

5.2.1 Sum-out Operator

A sum-out operator acts on a potential and a set of variables.
It sums out the variables in the given set and returns a poten-
tial defined over a small set of variables. Let the potential
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be φ and its set of domain variables be {X1:n}. Without
loss of generality, let the node to sum out be Xn. The mean
matrix of φ(X1:n−1) is defined to be [1]:

µφ(x1:n−1) =
∑
xn

µφ(x1:n−1, xn)

and the covariance matrix of φ(X1:n−1) is defined to be [1]:

σ2
φ(x1:n−1; x′

1:n−1) =
∑

xn,x′
n

σ2
φ(x1:n−1, xn; x′

1:n−1, x
′
n).

The above operator can be readily extended to sum out mul-
tiple nodes. In that case, the variables can be summed out
one by one in any order.

5.2.2 Division Operator

The division operator acts on two potentials and returns a
quotient potential. Let the two potentials be g and h, and
the result be g/h. Given g and h, the mean matrix of g/h is
defined to be [1]:

µg/h(x1:n) =
µg(x1:n)
µh(x1:n)

(7)

and the covariance matrix σ2
g/h at (x1n ; x′

1:n) of g/h is de-
fined to be [1]:

σ2
g(x1:n, x′

1:n)− µg/h(x1:n)µg/h(x′
1:n)σ2

h(x1:n, x′
1:n)

σ2
h(x1:n, x′

1:n) + µh(x1:n)µh(x′
1:n)

. (8)

Equations (7) and (8) are respectively the inverse of (5) and
(6).

5.3 Query Answering

After the clique tree is made consistent via global prop-
agation, we have φX = p(X, E = e0) for each cluster (or
sepset) X. The query result is obtained in two steps: mar-
ginalization and normalization.

• The marginalization step can be accomplished using
the sum-out operator, as discussed earlier.

• To normalize, we would use Yi = Xi∑
n

i=1
Xi

to replace

the node Xi. This yields a set of “normalized” vari-
ables. The potential is then defined over the normal-
ized variables and represented by its matrices. These
matrices are then exploited to calculate the query result
– the mean and the variance of p(Q = q|E = e0), an
approximation to the distribution of p(Q = q|E = e0).
In the following, we define the normalization operator.

5.3.1 Normalization Operator

Given a potential f(X1:N), the operator returns the matrices
representing a potential over a set of normalized variables
{Yn = Xn∑

i
Xi
|n = 1 : N}. Let the normalized potential be

f̄ . For each node Yn, its mean and variances are computed
by the following two equations where β =

∑
i µi and σ2

ij =
σ2

f (xi, xj) [1].

µf̄ (yn) = µn

β + 1
2β3 [(2µn − 2β)σ2

n +
∑

i=j �=n 2µnσ2
i

+(2µn − β)(
∑

i�=n σ2
in +

∑
j �=n σ2

nj) +
∑

i�=j �=n 2µnσ2
ij ].

σ2
f̄
(yn) = 1

β4 [(β − µn)2σ2
n + µ2

n

∑
i�=n σ2

i − µn(β − µn)
(
∑

i�=n σ2
in +

∑
j �=n σ2

nj) + µ2
n

∑
i�=j �=n σ2

ij ].

The equations are obtained using Taylor expansion of the
definition Yn = Xn∑

i
Xi

at Yn = yn, as shown in [19].

6 SAMPLING APPROACH FOR SOU-BNs

In this section we generalize the likelihood weighting al-
gorithm [8, 15] for BNs to accommodate SOUs. The re-
sulted sampling algorithm, run for a suitably long time,
serves as a reference algorithm for validating results ob-
tained with SOU-JT.

The likelihood weighting algorithm relies on random
sample generation. For simplicity, imagine a BN with no
evidence entered. The algorithm produces a sample drawn
from the prior distribution for each node without parents,
then samples each child node based on the distribution given
already-instantiated parents, until each node in the network
has been assigned a state. It performs this process over and
over again, remembering the final outcome for each state
in each trial. It then averages over all of the trials to esti-
mate the joint probability distribution for each variable in
the network.

Our SOU sampling algorithm works similarly, except
that for each node, we sample twice: first, to determine
the prior probability distribution given the mean and covari-
ance matrices, then to determine an actual outcome given
this particular instantiation of the prior distribution. With
this, we obtain a first-order estimate of the mean values of
the distribution. To generate estimates of the variances, we
first generated a sample of prior distributions over all of the
nodes in the network, and then for each such set we gener-
ated enough samples to characterize the probability distri-
bution. Taking the set of all samples of such prior distrib-
utions, we can compute the variance on the probability of
any particular node.

The likelihood weighting algorithm used in our referee
system gets its name from the treatment of evidence within
the network. Any particular trial receives a weight based
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on the likelihood of a particular sample given the available
evidence. In this way, the sampling process iteratively ap-
proaches the true posterior distribution of the network.

7 EXPERIMENTS

7.1 Experimental Setup

The validation process involved several different SOU-
BNs, some of which were based on real-world applica-
tions and some were randomly generated. The real-world
networks included HAILFINDER (a 57-node network for
predicting weather in northern Colorado), ALARM (a 37-
node network for monitoring patients in intensive care)
and WIN95PTS (a 76-node network for diagnosing printer
problems). These networks can be found at the reposi-
tory http://www.cs.huji.ac.il/labs/compbio/Repository/. We
made changes to the FOU-BN models to include SOUs by
manually augmenting the models with or generating ran-
dom means and covariances of CPTs. To further evaluate
the algorithmic performance, we created two random net-
works: (1) a very loopy 36-node network arranged in a 6x6
lattice (most nodes having eight neighbors), and (2) a large
but sparsely connected graph of 200 nodes. Each node rep-
resented between two and six states, and the mean and co-
variance values of the conditional probability tables were
chosen at random.

In each experiment, we used our sampling algorithm
to generate approximate referee mean likelihood and vari-
ances, then compared those results with the performance
of our SOU-JT algorithm. Each node’s deviation was cal-
culated using |x−x̂|

x , where x represents the value (either
mean or variance) generated by the sampling algorithm and
x̂ represents the value generated by the SOU propagation
algorithm. These values were then averaged over all nodes
to determine their averages shown in Tables 1, 2 and 3. To
accelerate SOU-JT and to ensure numerical stability, we ap-
plied zero-compression techniques to the calculations of co-
variances [10]. These tests were conducted using a HUGIN-
based inference engine. More recently, we developed a
Lazy Propagation engine [11] featuring several optimiza-
tion techniques. This has proven so far to be 30 times faster,
on average, than the HUGIN-based engine.

7.2 Results

Table 1 shows our best results for networks with no ev-
idence entered. The “Average” row in the table represents
the average over all tested real-world BNs available. Many
choices of zero-compression threshold were tried, includ-
ing ones based carefully on the distribution of values within
the matrix, but the best results were obtained with a simple

constant-value threshold of 0.01. That is, all covariance ma-
trix entries with values less than this are discarded. It can
be seen that the results from SOU-JT and the sampling algo-
rithms are close. Hence the SOU-JT algorithm is effective
in mean and covariance propagation.

Maximum Average Average
BNs mean mean variance

deviation deviation deviation
Average 2.14% 0.45% 4.22%

Loopy lattice 3.08 0.64 7.27
Large sparse 0.61 0.19 1.45

Table 1. Best performance

Table 2 shows the performance of the algorithm with ran-
dom evidence entered. In experiments, 5 and 20 percent of
nodes were chosen at random, and an observation distribu-
tion over the states in the node imposed. The averages in the
tables were taken over all of the nodes which did not have
evidence entered. Each table entry has two numbers: the
first is for 5 percent case and the second in parentheses is for
20 percent case. We note that adding evidence improves the
performance of the networks, though the effect is less no-
ticeable for densely connected networks (Lattice network)
than for sparse ones. This is explained by the fact that the
values of evidence variables are unaffected by the message
passing algorithm, and therefore serve as a firebreak in the
propagation of errors.

Maximum Average Average
BNs mean mean variance

deviation deviation deviation
Average 2.95 (1.83) % 0.61 (0.40) % 3.92 (3.16) %

Loopy lattice 3.41 (3.03) 0.77 (0.79) 8.04 (7.41)
Large sparse 0.40 (0.26) 0.12 (0.09) 1.25 (1.01)

Table 2. Evidence on 5% and 20% of Nodes

We show the timing performance on each network using
a 1.83GHz Pentium system in Table 3. We ran the sampling
algorithm about four hours on each network. For SOU-JT,
in the table, the compilation time is the amount of time it
takes to generate the junction tree and do an initial round of
message passing to bring the network to a consistent state.
The message passing time is the time taken to re-establish
consistency after evidence has been entered. We see that
most queries can be answered in (nearly) real-time manner
from SOU-JT, except those on the highly dense lattice net-
work in which each node has eight neighbors.

This validation process provides solid experimental evi-
dence for the correctness of our SOU-JT algorithm. Under
many different network conditions, the means and variances
computed by SOU-JT closely match the figures obtained
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BNs Compilation Message passing
HAILFINDER 8.2 sec 1.1 sec

ALARM 5.9 1.0
WIN95PTS 14.6 3.1

Loopy lattice 137.0 46.6
Large sparse 1.1 0.1

Table 3. Running time

from the brute-force simulation. Combining the timing re-
sult, we conclude that SOU-JT is able to efficiently provide
accurate inference solutions to SOU-BNs.

In addition, the results we obtained suggest that SOU-
JT does not suffer from the same problem affecting interval
propagation. In interval propagation the a-posteriori inter-
vals tend to diverge towards the [0, 1] interval as inference
proceeds along the network. We did not observe this effect
so far with the computation of covariances. Further tests are
being conducted to verify this behavior.

8 CONCLUSIONS

In this paper, we described a new extension to increase
the expressiveness of BNs. We used a second-order prob-
ability representation for encoding conditional dependen-
cies among variables. We then discussed probabilistic in-
ferences in this context and their mean/covariance repre-
sentation. We developed the first clique tree algorithm to
propagate mean and covariances for SOU-BNs [1]. To
make the algorithm operational, we defined the fundamen-
tal operators including extension, multiplication, division,
sum-out (marginalization) and normalization for SOU po-
tentials [1]. For algorithm validation, we generalized the
likelihood weighting approach to accommodate SOUs and
provide ground-truth inference results. Our experimental
results showed that the proposed algorithm can efficiently
produce high-quality inference results. These appear not to
be affected by the divergence problem typical of interval
propagation.
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