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Abstract. This paper presents a guideline for visualization designers
who want to choose appropriate techniques for enhancing tasks involving
multidimensional projection. Specifically, we adopt a user-centric app-
roach in which we take user perception into consideration. Here, we focus
on projection techniques that output 2D or 3D scatterplots that can then
be used for a range of common data analysis tasks, which we categorize as
pattern identification tasks, relation-seeking tasks, membership disam-
biguation tasks, or behavior comparison tasks. Our user-centric task
categorization can be used to effectively guide the organization of
multidimensional data projection layouts. Moreover, we present real-
world examples that demonstrate effective choices made by visualiza-
tion designers faced with complex datasets requiring dimensionality
reduction.

Keywords: Multidimensional data analysis · Task taxonomy · Multi-
dimensional data projection · User-centric evaluation

1 Introduction

Visualization is a crucial step in the process of data analysis. Often, when ana-
lyzing multidimensional data, dimensionality reduction (DR) techniques are dis-
played in form of 2D or 3D scatterplots that project the multidimensional points
onto a lower-dimensional visual space. Methods using different algorithms to gen-
erate scatterplots with particular point placements are the most common visual
encoding (VE) techniques for the resulting lower-dimensional data. DR tech-
niques, coupled with appropriate VEs, enable an understanding of the relations
that exist within the higher-dimensional data by displaying them in such a way
that makes it easier for users to discover meaningful patterns [36].

Data analysis tasks are primarily concerned with the detection of structures
such as patterns, groups, and outliers. Within a multidimensional data set, data
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points can be grouped manually into classes or automatically into clusters. For
example, classes may be defined through manually labeling a collection of doc-
uments so that each document belongs to one topic within a set of topics, or by
splitting an image collection into ten classes by assigning each image a particular
theme from a set of ten themes. Clusters, on the other hand, are generated auto-
matically using a clustering algorithm that may, for instance, identify groupings
of similar points, or partition the data into dissimilar groups where each cluster
contains similar items [25]. However, it may be difficult to see these clusters or
classes when projected onto a lower-dimensional space. To make sense of this
multidimensional data, it can be useful to know how the clusters or classes are
defined and structured in the original multidimensional attribute space. How-
ever, multidimensional projection mappings are especially prone to distortion
because projection methods may not necessarily preserve the spatial relations
of the data. Thus, it is important to know how effective the scatterplots are at
preserving segregation of the data [42]. Several studies evaluate the quality of
projections with respect to preserving certain properties, thus guiding a user to
select the most appropriate projection method for their task. Various numerical
and visual methods have been introduced to quantify the accuracy of projection
methods with respect to such properties [42,46]. Recent studies [41] have shown
that the quality of cluster separation by these measures was highly discrepant
with user assessment of the cluster separation within the same data sets. Lewis
et al. [24] believe that accurate evaluation of clustering quality is essential for
data analysts, and they showed that such clustering evaluation skills are present
in the general population. On the other hand, other studies have attempted to
find a perception-based quality measure for scatterplots. They either evaluated
users’ performance on layouts generated by different projection techniques [14]
and used eye-tracking while users are asked to perform typical analysis tasks for
projected multidimensional data or allowed users to assess a series of scatter-
plots [2]. Other studies have investigated the perception of correlation in scat-
terplots from a psychological perspective; however these studies did not consider
real-world data sets [34].

Because of the absence of a standard approach for evaluating multidimen-
sional data projection, the results of these studies, and others like them, are
difficult to compare. We present a taxonomy of visual analysis tasks for multi-
dimensional data projection that we believe could be a useful means for eval-
uation. The idea of creating a task taxonomy has been recently explored by
Brehmer and Munzner [7]. They contribute a multi-level typology of visualiza-
tion tasks that augments existing taxonomies by filling a gap between low-level
and high-level tasks. Specifically, they distinguish what the task inputs and out-
puts are, as well as why and how a visualization task is performed. In doing
so, they more thoroughly organize the motivations for and methods of specific
tasks for particular data analysis situations. Their task taxonomy is more gen-
eral, and does not address multidimensional data projection in any detail. In this
paper, we provide a taxonomy of visual analysis tasks related to multidimensional
data projection. Our task taxonomy enables evaluation designers to investigate
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visualization performance effectively on both synthetic and real-world data sets.
The main contributions of the paper are:

– We provide a systematic user-centric taxonomy of visual tasks related to pro-
jected multidimensional data.

– We divide the projection-related tasks into different categories based on their
impact on the analysis of multidimensional data. The categories we identify
are relation-seeking, behavior comparison, membership disambiguation, and
pattern identification tasks.

– We enable, via our task taxonomy, visualization designers to improve visual-
ization tasks related to the analysis of multidimensional data.

– We present our taxonomy as a guideline for researchers in choosing visualiza-
tion techniques for these tasks, and provide explicit examples.

– We adapt multilevel typology of abstract visualizations to multidimensional
data projection tasks [7].

In the next section, we provide a brief review of existing task taxonomies for
DR and VE techniques. In Sect. 3, we introduce our task taxonomy for multi-
dimensional data projection by describing new sets of tasks related to typical
analysis tasks, including pattern identification, such as detecting clusters, behav-
ior comparison, such as comparing characteristics of subsets, membership dis-
ambiguation, such as counting the number of objects in a cluster, and relation
seeking, such as correlating subsets to each other. We discuss the effects of our
proposed tasks on the evaluation of scatterplots by providing some examples
of how different tasks support decision making respective to human perception
over multidimensional data projections. We also characterize our proposed tasks
using the multi-level typology of abstract visualization tasks [7]. We applied
Brehmer and Munzner’s multi-level topology concept for describing two tasks
as guidelines, while the three questions (WHY, WHAT, HOW) can be used to
structure the description of all tasks.

2 Related Work

Many projection methods exist to generate 2D similarity-based layouts from
a higher-dimensional space. The design goals include maintaining pairwise dis-
tances between points [6] as implemented in multidimensional scaling (MDS),
maintaining distances within a cluster, or maintaining distances between clus-
ters [47]. Principal component analysis (PCA) generates similarity layouts by
reducing data to lower dimensional visual spaces [22]. Some projection meth-
ods, such as isometric feature mapping (Isomap), favor maintaining distances
between clusters instead. Isomap is an MDS approach that has been introduced
as an alternative to classical scaling capable of handling non-linear data sets.
It replaces the original distances by geodesic distances computed on a graph
to obtain a globally optimal solution to the distance preservation problem [47].
Least-Square Projection (LSP) computes an approximation of the coordinates
of a set of projected points based on the coordinates of some samples as control
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points. This subset of points is representative of the data distribution in the input
space. LSP projects them to the target space with a precise MDS force-placement
technique. It then builds a linear system from information given by the projected
points and their neighborhoods [31]. The correlations of data points or clusters
are not always known after they have been mapped from a higher-dimensional
data space to 2D or 3D display space. Thus, several approaches evaluate the best
views of multidimensional data sets. Sips et al. [42] provide measures for ranking
scatterplots with classified and unclassified data. They propose two additional
quantitative measures on class consistency: one based on the distance to the
cluster centroids, and another based on the entropies of the spatial distribu-
tions of classes. They propose class consistency as a measure for choosing good
views of a class structure in high-dimensional space. Tan et al. [44], Paulovich
et al. [31], and Geng et al. [18] also evaluate the quality of layouts numerically. By
ranking the perceptual complexity of the scatterplots, other studies investigate
user perception by conducting user studies on scatterplots, finding that certain
arrangements were more pleasing to most users [45]. However, these operational
measures were not necessarily equivalent to the measures of user preference based
on their qualitative perceptions. Sedlmair et al. [40] have discussed the influence
of factors such as scale, point distance, shape, and position within and between
clusters in qualitative evaluation of DR techniques. They examined over 800
plots in order to create a detailed taxonomy of factors to guide the design and
the evaluation of cluster separation measures. They focused only on using scat-
terplot visualizations for cluster finding and verification. DimStiller [20] is a
system to provide global guidance for navigating a data-table space through the
process of choosing DR and VE techniques. This analysis tool captures useful
analysis patterns for analysts who must deal with messy data sets. Rensink and
Baldridge [34] explore the use of simple properties such as brightness to generate
a set of scatterplots in order to test whether observers could discriminate pairs
using these properties. They found that perception of correlations in a scatter-
plot is rapid, and that in order to limit visual attention to specific information
it is more effective to group features together. Etemadpour et al. [17] postulate
that cluster properties such as density, shape, orientation, and size influence
perception when interpreting distances in scatterplots, and specifically, observe
that the density of clusters is more influential than their size.

In general, little attention has been paid to providing details about low-level
tasks that guide users to choose DR and VE techniques. However, both high-level
goals and much more specific low-level tasks are important aspects of analytic
activities. Amar et al. [3] presented a set of ten low-level analysis tasks that they
found to be representative of questions that are needed to effectively facilitate
analytic activity. Andrienko and Andrienko distinguish elementary tasks that
address specific elements of a set and synoptic tasks that address entire sets or
subsets, according to the level of analysis [4].

Brehmer and Munzer [7] emphasize three main questions, why the tasks are
performed, how they are performed, and what are their inputs and outputs.
These questions encompass their concept of multi-level typology. They believe
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that “low-level characterization does not describe the user’s context or motiva-
tion; nor does it take into account prior experience and background knowledge.”
Their typology relies on a more abstract categorization based on concepts, rather
than a taxonomy of pre-existing objects or tasks. In contrast, we attempt to
specify tasks at the lowest level that can provide details about multidimensional
data projection. However, the general approach of Brehmer and Munzner can
be easily adopted as a tool to put these low-level tasks in context, facilitat-
ing the evaluation of user experiences by evaluation designers. This approach
provides essential information, such as motivation and user expertise, for field
studies that examine visualization usage. Therefore, we show how our defined
tasks can be described according to a typology of abstract tasks relating intents
and techniques (how) to modes of goals and tasks (why).

We (1) categorize possible tasks performed when analyzing a specific multidi-
mensional data visualization, and (2) formulate guidelines for analysts to assist
in selecting appropriate projection techniques for performing specific visualiza-
tion tasks on data sets.

3 Task Taxonomy for Multidimensional Data Projection

We define a list of tasks from studies of different projection techniques and
their 2D layouts such as PCA [22], Isomap [47], LSP [31], Glimmer [21], and
NJ tree [29], as well as the applications behind the data (e.g. document and
image data). We explain some of these tasks in detail and provide examples of
effective data representations for relevant visual analysis tasks. As explained in
Sect. 2, how well groups of points can be distinguished by users in scatterplots
defines visual class separability. Our cluster-level tasks also focus on how easily
a grouping of related points in multidimensional space (e.g., clusters) can be
detected by users when projected into lower-dimensional space. However, rather
than only looking at visual class separability, we consider how effective users are
performing meaningful tasks related to the perceived clusters.

Although other researchers have explored some of these tasks, we systemat-
ically list the full range of analytic tasks for multidimensional projection tech-
niques appropriate for large data sets. Additionally, our organization of these
tasks takes into consideration user perception. We divided the tasks into four
categories according to the typical visualizations required to support them:

Pattern Identification Tasks: We examine trends, which are more obvious
for lower-dimensional data than for projected higher-dimensional ones. Relevant
issues include cluster/class preservation and separation.

Relation-seeking Tasks: Relationships and similarities between different ref-
erence sets are considered.

Behavior Comparison Tasks: To compare characteristics of subsets (or clus-
ters), we consider capturing different data behaviors (like asking the subjects
to compare the point densities within clusters, where density is defined as the
number of points per area).
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Membership Disambiguation Tasks: Positional and distributional relation-
ships within classes/clusters are particularly considered where objects occlude
each other. Clutter and noise obscure the structure present in the data and make
it hard for users to find patterns and relationships. Peng et al. [32] state that
clutter reduction is a visualization-dependent task. Therefore, the DR and VE
need to minimize the amount of confusing clutter. We believe that clutter can
be measured by users using a wide variety of visualization techniques.

We now clarify these taxonomic categories by looking at common tasks found
in the literature.

3.1 Pattern Identification Tasks

Multidimensional data sets may include hundreds or thousands of objects
described by dozens or hundreds of attributes. Data characteristics regarding
the distribution within multidimensional feature spaces vary for different appli-
cation domains. For example, consider document data versus image data: text
usually produces sparse spaces while imagery produces dense spaces. As Song
et al. [43] state, traditional document representation like bag-of-words leads to
sparse feature spaces with high dimensionality. This makes it difficult to achieve
high classification accuracies. Figure 1 shows histograms of the distribution of the
pairwise distances between four data objects after normalization to the interval
[0,1]. The document data sets are referred to as CBR and KDViz1. The image
data sets are referred to as Corel2 and Medical3. The revealed histograms illus-
trate different characteristics for document data sets and image data sets. Both
image data sets exhibit lower mean distance values and much wider variance
(representative of a denser feature space) than the document data sets.

Identifying patterns in high-dimensional spaces and representing them using
dimensionality reduction techniques, in order to reveal trends, is a challenge in
many scientific and commercial applications. To identify outliers, trends and
interesting patterns in data, one of the many objectives of data exploration
is to find correlations in the data, thus uncovering hidden relationships in the
data distribution and providing additional insights about the high-dimensional
data [53]. Therefore, a list of questions are suggested that can reveal user’s
perspective about local and global correlations with respect to features – for

1 CBR comprises 680 documents, which include title, authors, abstract, and references
from scientific papers in the four different subjects, leading to a data set with 680
objects and 1,423 dimensions. KDViz data has been generated from an Internet
repository on the topics bibliographic coupling, co-citation analysis, milgrams, and
information visualization, leading to 1,624 objects, 520 dimensions, and four highly
unbalanced labels (http://vicg.icmc.usp.br/infovis2/DataSets).

2 1,000 photographs on ten different themes. Each image is represented by a 150-
dimensional vector of SIFT descriptors (3UCI KDD Archive, http://kdd.ics.uci.edu).

3 Each image is represented by 28 features, including Fourier descriptors and energies
derived from histograms, as well as mean intensity and standard deviation com-
puted from the images themselves. Hence, the data set contains 540 objects and 28
dimensions.

http://vicg.icmc.usp.br/infovis2/DataSets
http://kdd.ics.uci.edu
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(a) (b)

(c) (d)

Fig. 1. Histograms of document data (top) and image data (bottom) exhibit charac-
teristic distance distributions: (a) CBR. (b) KDViz. (c) Corel. (d) Medical.

instance, those subsets of data which form relevant patterns (e.g. subsets of
data within dense feature groups): (1) Estimate the number of outliers in the
given layout; (2) Estimate the number of observed clusters; (3) Find the number
of clusters in a selected region; (4) Find the number of subclusters in a given
cluster; (5) Find a cluster with a specific characteristic (e.g., longish); (6) Find
the specific characteristics (e.g., sparsity) of a cluster; (7) Determine the number
of outliers in a given cluster.

If researchers aim to find the user’s performance on class segregation, it
is important to draw the user’s attention to global project views. Thus, we
suggest asking Estimate the number of clusters in the given layout to identify
the informative aspects of the data.

Pattern identification tasks often favor clear segregation by class, which
means that techniques which incorporate cluster enclosing surfaces can be help-
ful. In some situations, the labeled classes in each data set can be considered as
ground truth. For such cases, Poco et al. [33] developed a 3D projection method
by generalizing the LSP technique from a 2D to a 3D scheme. A non-convex
hull (of each cluster) that is computed from a 3D Voronoi diagram of the clus-
ter points is illustrated in Fig. 4(a). This representation, when it is possible to
construct, is both accurate and satisfying to users, compared to other techniques.

For situations in which a small set of representative instances from each class
is available, or can be manually labeled from a large data set, Paiva et al. [30]
proposed a semi-supervised dimensionality reduction approach that employs the
Partial Least Squares (PLS) [52] technique, producing reduced spaces that favors
class segregation. PLS models relations between sets of variables by estimating a
low dimensional latent space, that maximizes the separation between instances
with different characteristics, resulting in a low dimensional latent space in which
instances from the same class are clustered. The proposed methodology employs
visualization techniques to show the similarity structure of the collection, in order
to guide the user in selecting representative instances to train the PLS model,
that can then be applied to a much larger data set very effectively. Figure 2
shows the LSP projection of Corel data set, with the original dimensionality
(a) and after a PLS reduction to 10 dimensions (b). One can notice that the
groups are more dense on the reduced space, highlighting the class separability.
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(a) (b)

Fig. 2. Layouts for Corel data set obtained using LSP projection, using all 150 original
attributes and using PLS reduced 10 attributes.

The methodology can also be used for situations in which the instances labels
are not available. In this case, a clustering procedure is performed, and the
cluster labels are then used to produce a PLS model. For data sets whose cluster
structure reflects the class distribution, this methodology will create a reduced
space that will favor class segregation.

Also for situations in which a labeled instances set is available, Paiva et al. [28]
proposed a visual classification methodology (VCM) that integrates point-based
visualization techniques and automatic classification procedures to support con-
trol over the whole classification process by users. It yields visual support to
classify evolving data sets by allowing user interference, via similarity based
visualizations, during supervised classification in an integrated form, promoting
users control over model building, application, evaluation and evolution. User
insertion is made by the selection of instances to create a classification model,
and this selection is performed using the layout, whose structure and point orga-
nization is able to guide the user towards a relevant selection. The created classi-
fication model can then be employed in the classification of any collection bearing
the same feature space. Similarity layouts may represent, in these scenarios, a
potential tool to explore the structure and relationship among instances and
thus identify the representative ones of each class. That can be achieved, e.g.,
by analyzing class segregation or by determining outliers that could distort the
classifier behavior. Additionally, the methodology allows, in situations in which
a ground truth exists, a visual inspection of the classification results using the
same visual strategy, in a tool named Class Matching, which provides an under-
standing of the classifiers behavior, and how the data set structure influence
this behavior. Finally, model updates can be performed by selecting additional
instances from a visualization layout, that offers the possibility of several model
updating strategies. Figure 3 shows three layouts, using a NJ tree, of a subset
of the ETHZ4 data set, containing 1,739 instances, with (a) representing the

4 ETHZ represents a subset of the ETHZ dataset [13,38], with 2019 photographs of
different people captured in uncontrolled conditions. It is divided into 28 unbalanced
groups, and each image is represented by a vector of 3963 descriptors, combining
Gabor filters, Histogram of Oriented Gradients (HOG), Local Binary Patterns (LBP)
and mean intensity.
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ground truth, (b) the result of a SVM classification on this data set, and (c) the
corresponding class matching tree, exhibiting in red the misclassified instances.
The training set used to build the SVM model contains 280 equally distributed
instances. The layout provides several clues about the structure of this collection,
as well as about the classifier behavior. Looking at (a), one can notice that the
branches are usually homogeneous in terms of classes, as indicated by the circles
colors. However, in (b) it is possible to see some heterogeneous branches, which
coincide with most of the misclassified instances, indicating that the classifier
is confuse about these instances. Moreover, it is possible to notice that class 6
instances are spread in four branches, which may indicate that this class is highly
heterogeneous. The data set is originally unbalanced, and class 6 contains the
highest number of instances, which may also cause instances from other classes
to be classified as 6. By analyzing the confusion matrix, it is possible to notice
that several instances from class 26 were classified as class 21 or 6. The layout
shows that instances of these classes are positioned on the same branch, and it
is possible that they share common attribute values, with similar content. The
layout instances positions, allied with an adequate color coding, may facilitate
the comprehension of the reasons by which the classifier took these decisions,
as well as to indicate for which classes the classifier is deficient. Thus, users are
capable to perform effective updates to refine the classification results.

(a) (b) (c)

Fig. 3. NJ trees for ETHZ data set, showing (a) the ground truth, (b) the results of a
SVM classification, and (c) the corresponding class matching layout.

While this projection works well when the data’s pre-assigned class struc-
ture accurately models the data’s inherent organization, this is often not feasi-
ble. In many situations, analysts want to leverage human perception to identify
“visual groupings” of points, and in this case a point cloud representation pro-
duces favorable results. For example, when grouping information is not avail-
able, a point-based visualization as shown in Fig. 4(b) is still applicable. Also,
Glimmer [21], as a technique representative of force-directed placement MDS,
does not favor class segregation when employed on the KDViz data set. Thus,
color coding to separate nodes of different classes can be useful as shown in
Fig. 4(c). Therefore, if we have accurate class labels and good class separation,
we suggest enclosing surfaces like nonconvex hulls. According to the eye-tracking
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study on Glimmer projection, the visual attention pattern is scattered and it is
hard to identify any meaningful area of interest (AOIs) for Glimmer [17]. Hence,
it is useful to differentiate classes when the projection doesn’t reflect the class
distribution at all.

(a) (b) (c)

Fig. 4. Estimate the number of observed clusters: (a) Non-convex hulls computed from
enclosing surfaces isodistant to cluster using LSP projection; (b) Point-based visual-
ization using PCA projection taken from [37]; (c) The layout obtained with Glimmer
projection on the KDViz data set. Circle color indicates instance class label (Color
figure online).

3.2 Relation-Seeking Tasks

Relation-seeking tasks investigate the similarities and differences between sub-
groups which represent clusters or individual objects. Similarity layouts employ
projection techniques to reducing data to lower-dimensional visual spaces, but
in a different manner from that used in pattern identification. In this applica-
tion, an analyst is interested in investigating whether a point (or object) is more
similar to one cluster or to another, or whether a whole cluster is more similar to
a second cluster or a third. We believe that relationship-seeking is a search task,
Andrienko’s visual task taxonomy model notwithstanding (in which search tasks
are limited to lookup and comparison) [5]. In contrast, Zhang et al. [54] consider
comparison and relationship-seeking to be compound tasks, containing at least
two relationships, one being the data function and the other being relationships
between values (or value sets) of a variable. Under this definition, we believe
that finding similarities in projected high-dimensional data can be considered as
a relation-seeking tasks. Users perform comparison tasks with respect to a given
reference set, which can be a cluster or an individual object, and can undertake a
similarity search by identifying a given cluster’s neighbors. In such a search, the
specified relationship is defined by a distance search within a high-dimensional
data projection.

A list of potential tasks within the relation-seeking task category can be
considered for multidimensional data visualization: (1) Identify the closest clus-
ter to a given cluster; (2) Identify the most similar cluster to a given cluster;
(3) Identify the closest cluster to a reference point; (4) Identify the most similar
cluster to a given object; (5) Find k closest (most similar) objects to the given
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cluster; (6) Find k closest (most similar) objects to the reference object; (7) Find
the closest (most similar) cluster to a cluster with a specific characteristic (e.g.,
Find the closest cluster to the longish cluster); (8) Identify the cluster to which
the reference set/sets belong; (9) Find the closest (most similar) cluster to the
set of points with specific characteristics (e.g., points that have identical move-
ment); (10) Find k closest (most similar) points to the set of points with specific
characteristics; (11) Find the clusters that have hierarchical relations; (12) Find
k similar objects within a cluster; (13) Find a cluster that is the parent of two
reference sets.

Etemadpour et al. [15] investigated how domain-specific issues affect the out-
come of the projection techniques. They used a number of similarity interpreta-
tion tasks to assess the layouts generated by projection techniques as perceived
by their users. To show that projection performance is task-dependent, they
generated layouts of high-dimensional data with five techniques representative
of different projection approaches. To find a perception-based quality measure,
they asked individuals to identify the closest cluster to a given cluster and object.
Users also ranked the k nearest objects to a given object. As shown in Fig. 5, the
target cluster/object was shown in one color (red) and two other clusters in other
colors (green and blue), from which the one closer to the target cluster/object
should be identified.

Fig. 5. Task: determine whether green or blue cluster is closer to red object in order
to investigate PCA projection performance (Color figure online).

Node-link diagrams have been studied in detail in many graph drawing topics
or graph visualization approaches, where a node is representing an entity that
is connected to other nodes through lines (i.e., links). Although the node-link
diagram is an intuitive way to visually represent relationships between entities
for relatively small data sets [19], there may be too many lines crossing with
each other that obscure relationships among entities when dealing with larger
data sets. In order to represent spatial distance visually in cases like these, a
technique like the Force-Directed Placement approach [12] can be used to reveal
connections and similarity magnitude between entities. This technique relies on
iterative algorithms that model the data points as a system of particles attached
to each other by springs. The length of the spring connecting two particles is
given by the distance between their corresponding data points as shown in Fig. 6.
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Fig. 6. The spring embedder model [11].

A spatial embedding is obtained with an iterative simulation of the spring forces
acting on this hypothetical physical system, until it reaches an equilibrium state.

To Find k closest objects to the reference object, if the performance of a pro-
jection in terms of maintaining distances within a cluster is under investigation
and the cluster structure is known, a combination of hull-based and point-based
visualizations can be used. Schreck et al. [37] implemented an interactive system
that combined these two visual presentations letting users choose the best visual
representation of the projected data. They believed that such combined repre-
sentations introduce visual redundancy; however, it can improve user’s percep-
tion of the projection precision information depending on the application. Poco
et al. [33] improved the performance of their 3D point representation when they
combined standard point clouds with this user-guided process. Figure 7 demon-
strates finding 3 closest objects to the red object within a cluster when the
convex hull of the points is used.

Brehmer and Munzner’s typology is intended to facilitate understanding of
users’ individual analytical strategies. We employ their multi-level code, used to
label user behaviour, to enhance the evaluation of high-dimensional data projec-
tion. By utilizing the Brehmer and Munzner multi-level typology, we provide a
systematic way of justifying the choice of a particular task through asking three
main questions: Why, What and How. This multi-level typology of abstract
visualization tasks fills the gap between low-level and high-level classification
to describe user tasks in a useful way. This approach to analyzing visualization
usage supports making precise comparisons of tasks between different visualiza-
tion tools and across application domains [7]. For an effective design and evalu-
ation of multidimensional data visualization tools, one should consider why and
how our defined tasks should be conducted, and what are their potential inputs
and outputs. Meanwhile, sequences of tasks can be linked, so that the output
of one task may serve as input to a subsequent task. We focused on Find k
closest clusters to the given cluster in the relation-seeking category. We did not
consider any specific projection technique because it can be changed based on
the evaluator’s motivation.

Find k closest cluster to the given cluster : WHY: The goal is to Discover
k groups that are closest to a given cluster. A known target (given cluster) and
the whole projection visualization are provided. If the location of a given cluster
was known (or given by the examiner), then participants perform a Lookup.
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If the characteristic of the given cluster was given, the user can Locate the given
cluster with specific characteristics (e.g., searching for a given cluster in which
the elements are colored red). Then individuals search for k clusters that are in
the neighborhood of the given cluster and list these groups. WHAT: The input
for this task is a given cluster; this can be shown by the examiner or can be
indicated by a particular characteristic like the color red. All other clusters in
the entire visualization are also visible to the participants. The output is a list of
k groups that are closest to the given cluster. HOW: Participants identify the
k closest clusters to the given cluster. For example, they determine whether the
green or blue cluster is closer to the red cluster. They provide a list of clusters
that follow an ascending order, so that the distance of the first cluster in this
list to the given cluster is shortest compared to the other clusters. Select refers
to differentiating selected elements from the unselected remainder.

Fig. 7. Find 3 closest objects to the red object: Convex-hull of the point clusters (Color
figure online).

Trees are a natural form for depicting hierarchical relations and can be used
to Find the clusters that have hierarchical relations. A distinct category of 2D
mapping employs tree layouts to convey similarity levels contained in a distance
matrix. The algorithms to generate similarity layouts [9] are inspired by the
well-known Neighbor-Joining (NJ) heuristic originally proposed to reconstruct
phylogenetic trees. Similar points among members of the same subsets are placed
at the ends of branches. The points nearer the root of the tree are less similar
when compared with the points at the ends of branches. Similarity trees generate
a hierarchy, creating a tree structure where interpretation is subject to organi-
zation of the branches; for example, mapping data setswith the NJ and LSP
projections are compared in Fig. 8. In this example, the INFOVIS04 data set is
composed of documents published in a conference on information visualization,
and its content is homogeneous. Using NJ, documents with a high degree of
similarity are placed along the same branch. The branches circled in the figure
are examples of long branches without too many ramifications, and probably
represent specific sub-topics inside the collection. LSP, on the other hand, has a
tendency to create clusters in round clumps. This representation performs well
for certain tasks, but is less useful for finding the closest clusters to selected
objects [15].

Authors in [8] introduced BubbleSets as a visualization technique for data
that makes explicit use of grouping and clustering information. Members of the
same set are in continuous and concave isocontour, while a primary semantic



Choosing Visualization Techniques 179

Fig. 8. Comparison of INFOVIS04 document data set map using Neighbor Joining
and LSP projections: Four different topics of information visualization are identified
by coloring points. Figure is taken from [9] (Color figure online).

data relation is maintained with spatial organization. These delineated contours
do not disrupt the primary layout, so they avoid layout adjustment techniques.
This visualization technique is designed in order to facilitate depicting more than
one data relationship in data sets that contain multiple relationships. Using this
concept, we suggest contours around nodes belonging to the same set to Find
k similar objects within a cluster in a projection technique. Figure 9 shows an
example that uses the BubbleSets concept for an NJ heuristic projection. The
points that are sharing the same contour are members of the same set. These
boundaries are used to indicate the grouping clearly.

Fig. 9. NJ projection: geometric relationships, hierarchy and cluster perimeter are all
clearly defined using BubbleSets concept.

3.3 Behavior Comparison Tasks

A third way in which high-dimensional data projections can display data items in
lower-dimensional subspaces can provide insight into important data dimensions
and details. Our taxonomy distinguishes the subsets of tasks used for behavior
comparison: (1) Find the cluster with the largest (smallest) occupied visual area;
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Fig. 10. Task: Compare the density of the longish cluster versus the roundish cluster.
Scatter plots were generated with varying shapes, while holding density and size con-
stant, in order to investigate the effect of cluster shape (in projected space) on a user’s
inferences and perceptions of the data.

(2) Find the cluster with the most (least) number of points or size; (3) Find
densest (sparsest) cluster; (4) Given specific number of clusters (e.g. 5 clusters is
given); (5) Rank the clusters by density; (6) Rank the clusters by their occupied
visual area; (7) Rank the clusters by their size; (8) Compare density of two given
clusters with different or similar characteristics (e.g., density of a longish cluster
vs. a roundish cluster); (9) Compare the size of two given clusters with different
or similar characteristics; (10) Compare the visual area of two given clusters
with different or similar characteristics.

Density is an important metric because it indicates stronger relationships
between points within a cluster. Moreover, many studies [1,39,49] have indicated
that representations of density can play an important role in visualization. Fur-
ther, studies in psychophysics have shown that visual search can be affected by
the variance in the number of objects within groups [10,35,48]. Authors in [41]
named density as one of the Within-Cluster factors, namely, the ratio between
count and size. This can range from sparse, with few data points and a large
spread, to dense, with many points and a small spread. If the task is to Compare
density of two given clusters with different or similar characteristics(i.e. different
shapes), we suggest a point-based visualization. This allows users to easily see
the point distribution within a cluster and the occupied visual space. Moreover,
as investigated in [17], according to the Gestalt principle [23], the shape and
orientation of a cluster should also influence decisions during visual analysis.
For example, when two stretched clusters are aligned, they may be perceived
as a continuation of one cluster or in other words, characteristics of the clus-
ters influence the visual analysis from a perceptual view. Following these ideas,
continuity and closure create the perception of a whole cluster. Figure 10 illus-
trates the density of a longish cluster versus a cluster that looks more roundish.
In this example, cluster shape (e.g., whether a cluster appears to be round or
elongated) has been examined, while density and size of the clusters were the
same. In addition, 2D scatter plots are manually generated using synthetic clus-
ters [17]. Cluster shape (in projected space) influences users’ performance on
various inference tasks.

Again by utilizing the Brehmer and Munzner multi-level typology, we provide
an example that shows how our defined tasks can be fitted to this multi-level
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typology of abstract visualization tasks, in order to concisely describe our pre-
defined tasks. Find the Cluster with the Highest Number of Sub-clusters in the
behavior comparison category has been considered. Additionally, we did not
consider any specific projection technique because it can be changed based on
the evaluator’s motivation.

Find the Cluster with the Highest Number of Sub-clusters: WHY: The pur-
pose is to Discover a cluster with the highest number of sub-clusters. The clus-
ter characteristic is not provided; therefore, the search target is unknown and
Explore entails searching for the cluster with the highest number of sub groups.
Once the search process is done, Identify returns the desired reference. WHAT:
The input for this task is the entire visualization, including all clusters and their
sub-groups. The output is the identity of a cluster with the largest number of
sub-clusters. HOW: Individuals need to estimate the number of sub-clusters of
each cluster. This involves counting sub-groups within successive clusters until
the largest number is found. Therefore, they must Derive new data elements,
then Select the desired cluster.

3.4 Membership Disambiguation

It is desirable for the visual representation to avoid clutter, resolve ambiguity and
handle noise. At times, “identifying overlaps” may indicate that the classes are
not clearly separable, which suggests that the overriding task is one of pattern
identification. However, too much data on too small an area of the display, such
as a dense region of entangled clusters, diminishes the potential usefulness of
the projections even if the projection consists of some clearly separated clusters.
This is especially true when the user is exploring the data to: (1) Estimate the
number of objects in a selection; (2) Find an object with specific characteristic
(e.g. labeled point) within a cluster; (3) Count the number of objects in a given
cluster; (4) Identify the objects that overlap in a selected area.

When Finding an Object with a Specific Characteristic within a Cluster, a
visualization can favor good performance in preserving distances and relation-
ships, but only at the expense of producing visual clutter. As an example, the
PCA scatterplot of KDViz is too cluttered and distinguishing a specific object
within a cluster is not an easy task (Fig. 11).

To Estimate the number of objects in a selection, a target cluster/selection
can be highlighted with a different color as shown in Fig. 12.

A recent study [16] showed that a density-based motion can enhance pattern
detection and cluster ranking tasks for multidimensional data projections and
also uncover hidden relationships in scatterplots.

3.5 Meta-Projection

The tasks that are explained above can be used as given, or can be combined
into multi-step macrotasks. We note that the tasks that we have provided may
not cover all possible tasks of a given type, but they can be used as exemplars
when defining new tasks. Sub-clusters of a given cluster or group of points can
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Fig. 11. Find a purple object within the green cluster. Using a PCA projection
employed on the KDViz data set, it is hard to distinguish the purple point (Color
figure online).

Fig. 12. Estimate the number of objects in a selection in LSP projection.

(a) (b)

Fig. 13. A meta-projection: (a) sub-clusters; (b) clusters (meta-objects).

be considered as a meta-object. Meta-objects can create a meta-projection, and
new tasks can be executed on this projection based on this process. In Fig. 13(a),
the task is: “Find the closest cluster to the given cluster”. For instance, as appar-
ent “Linear Square” is the closest sub-cluster to the “Information Visualization”
sub-cluster and “Tree” is the closest sub-cluster to “Graph Drawing”. There-
fore, as shown in Fig. 13(b) we can analyze the meta-projection to see that
“Time Varying Filtering” is the closest cluster to the “Visualization” cluster
and similarly “Visualization” is the closest cluster to “Data Mining”. Using this
meta-projection, we can get more insight into our data.
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Thus, in Sect. 3, we saw examples of how appropriate visualization methods
could be determined for specific tasks.

4 Conclusion

Our user-centric guideline supports precise comparisons across different multi-
dimensional data projection techniques. However, it could be further extended
by considering a wider range of application domains that could introduce new
visualization scenarios, such as volumetric data sets with continuous scatter-
plots. The tasks we have defined are specific neither to a particular projection
algorithm nor dataset. Although we delineate a number of example tasks within
each of our taxonomic task classifications, they are not intended to be exhaustive.
We believe that our guideline could easily incorporate additional tasks; in future
work we plan to extend it with further user-centric tasks. We argue that pro-
jection methods are distinct in their characteristics in terms of both sparseness
and distance distribution, and that the nature of the task (in taxonomic terms)
should guide the visualization design. Our taxonomy can be used for examining
projection layouts and scatterplots in order to analyze how users perceive mul-
tidimensional data in a variety of situations. We also incorporate recent findings
about perception rules and cognitive processes as a valuable source of informa-
tion for such analyses; our guideline can help in categorizing possible tasks when
analyzing multidimensional data visualizations. These user-centric tasks could
be used as a guideline for assessing when other scatterplot visualization tech-
niques are appropriate, such as Star Coordinates [50], StretchPlots [26,27], or
even animations based on point cloud datasets [51]; future work will explore the
application of our guideline to a wider range of existing techniques.
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