
Int J Soc Robot (2012) 4:449–461
DOI 10.1007/s12369-012-0157-8

Remote Robotic Laboratories for Learning from Demonstration

Enabling user interaction and shared experimentation

Sarah Osentoski · Benjamin Pitzer · Christopher Crick ·
Graylin Jay · Shuonan Dong · Daniel Grollman ·
Halit Bener Suay · Odest Chadwicke Jenkins

Accepted: 13 June 2012 / Published online: 26 June 2012
© Springer Science & Business Media BV 2012

Abstract This paper documents the technology developed
during the creation of the PR2 Remote Lab and the pro-
cess of using it for shared development for Learning from
Demonstration. Remote labs enable a larger and more di-
verse group of researchers to participate directly in state-of-
the-art robotics research and will improve the reproducibil-

S. Osentoski (�) · B. Pitzer
Bosch Research and Technology Center, 4005 Miranda Ave,
Palo Alto, CA 94304, USA
e-mail: sarah.osentoski@us.bosch.com

B. Pitzer
e-mail: benjamin.pitzer@us.bosch.com

C. Crick · G. Jay · O.C. Jenkins
Brown University, Box 1910, 115 Waterman St, Providence,
RI 02912, USA

C. Crick
e-mail: chriscrick@cs.brown.edu

G. Jay
e-mail: tjay@cs.brown.edu

O.C. Jenkins
e-mail: cjenkins@cs.brown.edu

S. Dong
Massachusetts Institute of Technology, 362 Memorial Dr.
W7-203, Cambridge, MA 02139, USA
e-mail: dongs@mit.edu

D. Grollman
EPFL, Ecole Polytechnique Federale de Lausanne,
EPFL-STI-I2S-LASA, Station 9, 1015, Lausanne, Switzerland
e-mail: daniel.grollman@epfl.ch

H.B. Suay
Worcester Polytechnic Institute, 100 Institute Dr., 125 Atwater
Kent Labs, Worcester, MA 01609, USA
e-mail: benersuay@wpi.edu

ity and comparability of robotics experiments. We present
solutions to interface, control, and design difficulties in the
client and server-side software when implementing a remote
laboratory architecture. We describe how researchers can in-
teract with the PR2 and its environment remotely through a
web interface, as well as develop similar interfaces to visu-
alize and run experiments remotely.

Additionally, we describe how the remote lab technology
was used by researchers participating in the Robot Learning
from Demonstration Challenge (LfD) held in conjunction
with the AAAI-11 Conference on Artificial Intelligence.
Teams from three institutions used the remote lab as their
primary development and testing platform. This paper re-
views the process as well as providing observations and
lessons learned.

Keywords Remote laboratories · Robot learning from
demonstration · Robot interfaces

1 Introduction

A significant challenge facing the effort to bring robots into
the daily lives of nontechnical users is their limited and in-
flexible behavioral repertoire. Expert roboticists can pro-
gram new policies and skills within specialized domains
such as manufacturing and lab experimentation, but this ap-
proach is not scalable to widespread deployment of robots
into homes and offices. Learning from Demonstration (LfD)
[3, 5] has been proposed as a potential solution. Under the
LfD framework, a user, also known as a teacher, provides
demonstrations of a desired task, which are then used to de-
velop a policy through machine learning techniques. A vari-
ety of approaches have been proposed as potential solutions

mailto:sarah.osentoski@us.bosch.com
mailto:benjamin.pitzer@us.bosch.com
mailto:chriscrick@cs.brown.edu
mailto:tjay@cs.brown.edu
mailto:cjenkins@cs.brown.edu
mailto:dongs@mit.edu
mailto:daniel.grollman@epfl.ch
mailto:benersuay@wpi.edu

450 Int J Soc Robot (2012) 4:449–461

Fig. 1 In the PR2 Remote Laboratory clients connect over the inter-
net, run experiments, and develop robotic applications on a shared PR2
platform

for LfD including supervised learning [4, 7, 11, 19], rein-
forcement learning [1, 22, 31, 35, 40], and behavior-based
approaches [28]. While these and other approaches are evi-
dence of the substantial progress that has been made in the
field, a fully realized system that works on a broad set of
desired tasks has not yet been achieved.

This article focuses not on the specifics of a LfD tech-
nique, but on a means to enable LfD research on a broader
scale. We examine how remote web-based robotic laborato-
ries can be used to advance LfD, describing tools for creat-
ing such laboratories and web-based robot interfaces. These
tools were part of our efforts to create the PR2 Remote Labo-
ratory, sketched in Fig. 1. As illustrated by the high response
rate to the PR2 Beta Program, the demand for high-quality
research platforms far outweighs the supply. These expen-
sive platforms are difficult to obtain for smaller universities
and research groups.

Moreover, researchers have long found it difficult to
make direct comparisons between the effectiveness of al-
gorithms and techniques for any number of robotics tasks,
including LfD. Approaches are often presented for different
applications, on different robots, and only to solve partial
problems without integration into complete systems. These
factors limit the productivity of the robotics research com-
munity and the development of the robotics market. Remote
research laboratories can enable researchers to develop, test,
and compare robot controllers in a unified setting. This will
not only allow for objective comparisons between different
solutions to the same problem but also uncover strengths and
limitations of current approaches more efficiently.

Previous attempts to create remote lab systems and online
robots [8, 9, 17, 18, 34] focused on simple experiments and
online learning. By contrast, our approach aims to provide
researchers with an environment for remote development
and experimentation on more capable robotics research plat-
forms. Most previous work was not intended to foster shared
research and experimentation. For this reason, these systems
did not build upon shared robot middleware systems or a
common software infrastructure. One consequence of this is

that researchers could not easily extend previous efforts to
build their own labs.

By contrast, the development of the PR2 Remote Lab
centered around reusable, open source software. We use
ROS, a robotic middleware system [33], in part due to its
popularity: currently there are at least 117 ROS repositories
and 3119 ROS packages.1 Not only can we leverage this
body of work for our remote lab, but other researchers can
use our infrastructure to support their own research.

In this paper, we present technology that allows remote
groups access to a shared PR2. A PR2 Remote Labora-
tory requires robust remote control, external sensing, remote
safety systems, remote error recovery, static and dynamic
environment modeling, visualization, and environment con-
figuration. We have made our solutions to these problems
publicly available to other researchers in the hope that these
tools can be expanded and adapted to other robot systems
and research problems. For example, these tools could be
used to collect demonstrations from a large number of re-
mote users.

Remote labs also provide the opportunity to carry out
joint experiments and therefore foster collaboration between
research labs. We describe the first use case for the re-
mote lab, the facilitation of the 2011 Robot Learning from
Demonstration Challenge. This challenge allowed teams to
come together to showcase cutting-edge techniques. We de-
scribe how three teams participated in the challenge using
the PR2 Remote Lab as their primary development and test
platform. The participants found the remote lab setting con-
ducive to getting their robot software development process
up and running quickly, and were able to share data between
teams and algorithms between common robot platforms.

2 Related Work

Remote laboratories offer the possibility to improve distance
education, timetabling issues, accessibility and the cost of
running laboratories. Li et al. [23] also cite the scarcity
of equipment and supervisors as a reason for pursuing re-
mote laboratories. A notable example of a successful remote
laboratory installation is the Telerobot of the University of
Western Australia (UWA) [37, 38]. This robot has been on-
line for over ten years and has been used by many students
as a remote laboratory to test kinematic models and con-
trol algorithms for stacking blocks. Other examples of re-
mote laboratory systems can be found in [8, 9, 16]. Previous
remote laboratories for online learning focused on experi-
ments such as manipulating simple objects [37, 38], visual
servoing [25], basic physics [9], and signal processing [16].

1http://www.ros.org/wiki/rosdoc_rosorg

http://www.ros.org/wiki/rosdoc_rosorg

Int J Soc Robot (2012) 4:449–461 451

Other online robots have mainly been built for entertain-
ment purposes or as artistic displays. Goldberg et al. placed a
robot in a garden and allowed users to view and interact with
the robot over the web. Users were able to plant seeds, wa-
ter, and monitor the garden [18]. Also, Taylor and Trevelyan
provided internet access to their UWA robot, allowing the
public to play with brightly colored blocks [37].

While the aforementioned work was focused on station-
ary robots, some work has been done on remote interfaces
for mobile robots. Schulz et al. [34] examined the use of
web interfaces to remotely operate mobile robots in pub-
lic places. This work focused on letting remote users inter-
act with humans within the robots’ environment and did not
examine the effect of the visualizations in a learning task.
Burgard and Schulz [6] have explored handling delay in re-
mote operation/teleoperation of mobile robots using predic-
tive simulation for visualization. This work examined how
robots could be controlled when there was a large delay in
the visualization presented to the user.

Apart from remote laboratories and public online robots,
much of the teleoperation work in robotics has tradition-
ally been aimed at tasks where robots operate in environ-
ments that are hazardous or difficult for human users, such
as robotic surgery [29], search and rescue [10], and outer
space [2]. While this form of remote operation is a part of
this paper, our goal is to provide a means of allowing re-
searchers to use the robot for remote development.

Recently, work in the machine learning community ex-
amined using crowdsourcing approaches to train robots.
Chernova et al. [12] examined using a multi-player video
game where users collaborate to provide user demonstra-
tions. Crick et al. [14] allowed a large number of users to
demonstrate policies on an actual robot within a maze en-
vironment using one of two interfaces. The remote lab de-
scribed in this paper could be used for such experiments, as
well as experiments that do not require learning or human
user studies.

3 Web-Based Laboratories for Learning from
Demonstration

Web-based robotic laboratories can help to advance the state
of the art in the LfD field in several ways. Such technolo-
gies enable researchers to create a variety of different inter-
actions quickly, efficiently, and in platform-agnostic fash-
ion. Another goal of our approach was to create a system
that could be used to recruit subjects at internet scale, en-
abling the creation of huge demonstration datasets which
could scale from single tasks to large numbers of skills.

In addition, the ability to create remote labs enables com-
parable research results. LfD does not have a set of standard

datasets since the types of interaction can vary greatly. How-
ever, by using a common remote lab infrastructure LfD re-
searchers can test their learned controllers in a set of stan-
dard domains. Additionally, in cases where interactions are
similar enough, data can be easily shared.

While remote labs will benefit LfD research, there are
limitations. For example, researchers who hope to examine
how social interaction plays a role in LfD or researchers who
examine LfD in situations where the robot watches humans
perform a task will have a difficult time employing remote
labs in their research. Even so, a significant portion of LfD
research can benefit from such technology. We derive the
following requirements for a web based remote laboratory:

1. Connectivity: Parts of the system must be able to com-
municate with each other. Hardware interfaces need to
communicate with processing nodes, the remote user
needs to communicate with the robot, etc. This commu-
nication can be asynchronous, as when changes in the
robot’s state need to be propagated to other parts of the
system, or synchronous, when a client makes a request
and waits for a reply before continuing. The communica-
tion system must be able to handle a variety of different
transport modalities including high-bandwidth channels,
such as camera streams, and rapidly-changing data, such
as state updates. The protocol should be flexible enough
to include new systems and functionality without any
change. Clients may have slow connections and not be
able to receive all data produced by a system. The sys-
tem must be able to adapt to the available bandwidth of a
client and send appropriate amounts of data.

2. Web Compliance: The aforementioned communication
must work within a web environment, using HTTP (over
TCP) as the underlying networking protocol. Direct TCP
communication may be more efficient in some situa-
tions; however the client may be behind a firewall which
will block any communication other than HTTP. A re-
mote laboratory client should load inside a web browser
without requiring additional plugins or software pack-
ages. Adhering to the HTML standards recommended
by W3C2 and WHATWG3 should ensure interoperability
with different browsers and different operating systems.

3. Synchronization: Synchronization is an important re-
quirement for any distributed system. State changes in
one part of the system need to be distributed to other parts
of the system. Systems using asynchronous communica-
tion over web connections also require synchronization
within the client. Generally, a variable delay is caused by
data traveling over the web connection. While this delay

2http://www.w3.org
3http://www.whatwg.org

http://www.w3.org
http://www.whatwg.org

452 Int J Soc Robot (2012) 4:449–461

cannot necessarily be controlled, it can at least be mea-
sured. This allows synchronization of data from different
sources.

4. Access and Resource Control: The remote lab’s web
connectivity inherently exposes the system to a large
number of web users. Parts of the system might only be
accessible to certain users, administrators for example.
Even if a user is allowed to access the remote lab hard-
ware, control and ownership must be shared with other
users. This leads to two requirements: unique authentica-
tion of users and a system to organize and schedule the
control over the remote laboratory resource.

5. User Interface: An important step in designing an inter-
face for a remote laboratory is to consider who will ac-
tually be using it. The technology described in this paper
can be used by a variety of different users with differ-
ent needs. For the purpose of this paper, we focus pri-
marily on LfD researchers and LfD demonstrators. Re-
mote laboratories allow researchers remote access to the
robot in order to directly participate in state of the art
LfD research. Since both the physical hardware and the
middleware are shared among different research groups,
remote labs should enable experiments that build upon
and compare against results on the same platform and in
the same environment for common tasks. The interface
must include enough functionality to run a variety of ex-
periments and the ability to modify existing and add new
components. Also additional functions to aid in testing
and debugging may be necessary to allow efficient de-
velopment. LfD demonstrators may not have significant
experience with robots, and therefore require simple and
intuitive interfaces that allow them to control the robot to
perform a desired task.

The larger goal of this technology is to broaden partici-
pation in robotics to robotics researchers, students, and the
general public. Researchers can create labs for shared exper-
imentation as well as enabling them to provide access to new
research platforms earlier in the development process. They
can also carry out joint experiments and foster collaboration
between research labs. Remote laboratories could be used to
improve distance education, timetabling issues, accessibil-
ity, and cost of running laboratories. Members of the general
public who are interested in experimenting with robots on a
very simple level should also be able to use such laboratories
to better understand the robotics field.

4 Tools for Remote Robotic Laboratories

This section describes the technology used to create the
web-based remote laboratories.

4.1 Rosbridge

ROS provides a structured communications layer above
the host operating system and is organized as a peer-to-
peer network of nodes that are processing data together.
The nodes communicate asynchronously by passing mes-
sages called topics based on publish/subscribe semantics.
A synchronous communication model is realized by ser-
vices. ROS addresses the connectivity and synchronization
requirements by providing a flexible communication layer.
However, it was designed to function in a homogenous,
tightly-integrated environment with extremely fast hardware
connections, not for slow and unreliable connections over
the web. We developed Rosbridge [13], which exposes the
capabilities of ROS, such as a robot’s data streams and con-
trollers, through web sockets accessible anywhere over the
internet, as well as providing security mechanisms and run-
time tools for interacting with and maintaining a robot sys-
tem.

Rosbridge includes several helpful features to assist robot
application developers and researchers in creating robot con-
trollers and interfaces that are executed over the network.
It provides dynamic access to ROS topics, services and as-
sociated types and objects, as well as runtime control of
nodes and parameters in the ROS environment. Rosbridge
also provides facilities for access control and data logging.

As a Rosbridge client can be any internet host, the exact
network characteristics of the connection are not possible
to predict in advance. However, tests of a representative se-
lection of hosts can establish likely network characteristics.
Limited bandwidth and variable end-to-end delays are a ma-
jor concern for web connections. We measured the data rate
(number of bits per second) being transported through Ros-
bridge. Note that this does not include video streams since a
separate channel is used for this data. Figure 2(a) shows the
data rates of the three largest topics sent to the client at the
rate of production. The average data rate is about 580 kbit/s
dominated by the /tf topic (530 kbit/s). For the PR2, the /tf
topic updates the robot’s state at 100 Hz. Since most state
variables change infrequently, a simple optimization of this
data channel consists of transmitting only partial state up-
dates of changing state variables. Figure 2(b) presents the
data rates after applying this optimization. The result is a
significantly reduced data rate (70 kbit/s) with spikes at
times when the robot’s arms move. A second optimization
performed in this experiment is an active throttling of top-
ics.

The end-to-end delay is estimated by measuring the
round trip time for a small topic in ROS sent from the client
to a node running on the robot. This is a more accurate mea-
sure than network round trip times (ping) since it includes
the overhead involved in rosjs (Sect. 4.2.2), Rosbridge, and
ROS for processing the messages. For a LAN connection

Int J Soc Robot (2012) 4:449–461 453

Fig. 2 Comparison of data rates before and after optimization

this round trip is about 30 ms; a transcontinental connection
increases this tenfold.

4.2 Creating Web Interfaces

Remote user interfaces can enable LfD researchers to con-
duct and observe experimental results on platforms not
available at their institutions. Additionally these tools can be
used to perform learning from demonstration experiments
on a large scale, gathered from users on the web. Given these
constraints, a web-based interface is a natural fit. Tools such
as HTML5 and Javascript allow developers to create sophis-
ticated interfaces. In this section, we describe the tools that
can be used to visualize the robot’s state and sensor data in
the browser. An example of an interface created using these
tools is shown in Fig. 3.

4.2.1 Video Visualization

Video is a natural and intuitive means of interacting with,
providing demonstrations to, and checking on the progress
of a robot. MJPEG, or motion JPEG, is a video stream for-
mat in which each frame of the stream is separately com-
pressed as an JPEG image. We created an mjpeg server4

4http://www.ros.org/wiki/mjpeg_server

that subscribes to requested image topics in ROS and pub-
lishes those topics as MJPEG streams via HTTP to a web
browser. While Rosbridge is capable of streaming video, as
it is just another message type from ROS, the web browser
is optimized to efficiently download images in binary for-
mat. Attempting to send high-resolution video streams over
the internet caused difficulty for previous remote lab efforts;
our video streamer handles them as efficiently as possible.

Users specify their requests to the mjpeg server in the
form of a URL. The URL includes the desired topic and
specifies video parameters (such as quality and size) to ac-
commodate particular connection speeds and interface de-
signs. This allows the webstream or image to be embedded
in a website through the tag.

4.2.2 rosjs

While video streams are useful viewing tools, they are not
capable of displaying the wide variety of data available on
a robot like the PR2. Additionally, there are many situations
in which remote users are likely to want to interact with the
robot either as part of data collection or as a normal part
of running experiments. We created rosjs [30], a Javascript
binding for ROS, to take full advantage of this technology,
enabling applications developed in the web browser to com-
municate with a robot running ROS and Rosbridge. Thus,
the web interface has access to the entire ROS middleware
ecosystem, exposed in a familiar, platform-neutral environ-
ment widely used by even nontechnical users. In addition to
providing a means of communicating with ROS topics and
services over Rosbridge, rosjs also provides a large collec-
tion of visualization tools implemented in Javascript. These
tools allow for rapid creation of user interfaces.

4.2.3 3D Web Visualization

A large portion of rosjs is dedicated to enabling 3D visual-
ization of the robot and its environment. 3D interfaces are
one of the most useful tools in visualization and develop-
ment of robot systems, allowing users to examine data from
multiple angles and understand the spatial relationships be-
tween the robot and its environment. An additional benefit of
such interfaces is that the messages required to create them
are relatively low bandwidth, especially when compared to
live video streams. The remote lab interface described in this
paper provides this functionality. Using robot models, poses,
maps, and custom visualization markers, the visualization
interface can display views of various types of robot data.

The underlying technology for visualizing 3D data on the
web is WebGL, a 3D graphics API implemented in a web
browser without the use of plug-ins. Similar to OpenGL,
WebGL provides a programmatic interface for 3D graphics
using the OpenGL ES 2.0 standard. Application developers
may use the WebGL library of their choice for visualization.

http://www.ros.org/wiki/mjpeg_server

454 Int J Soc Robot (2012) 4:449–461

Fig. 3 3D visualization based on WebGL is used to show the robot’s state and sensor data. A user can interact with the PR2 by using one of the
predefined interfaces or by writing small Javascript programs in order to send control commands

Our 3D visualizer provides an interface to WebGL based
on world objects and other high-level classes. It also pro-
vides a scene graph, which is an object-oriented represen-
tation of the 3D world. Such a representation is especially
suitable for robotic development, since data is represented
in various interdependent frames. It also simplifies the ex-
tension to new data types since scene nodes can be imple-
mented for any data type and inserted into the graph, as long
as they adhere to a common interface.

4.2.4 Widgets

Much of the infrastructure provided for rosjs is provided in
the form of widgets, modular stand-alone applications that
can be easily added to the interface. rosjs provides a wid-
get manager that handles registering widgets and their in-
terfaces. Programmers need only specify a class type when
creating a section of the HTML document. Most remote lab
widgets are robot-independent, though some are specific to
the PR2. Many of the widgets are useful for general LfD
experiments and remote experimentation.

Data Logging The topic logger provides both a client-side
Javascript user interface and a server. In order to record data
from experiments, a user can select the topics they wish to

record and press buttons to start and stop logging. The de-
sired topics are sent to the server-side node which records
the data. Once the user requests logging be stopped, the re-
mote lab makes the data available on a web server for down-
load.

Robot Monitoring Several widgets help monitor the cur-
rent status of the robot from the web interface. These in-
clude robot-independent widgets that monitor the data rate,
the frame rate of the display on the client end, and a wid-
get that allows users to list the topics available on the robot.
Additionally there are several PR2-specific widgets that al-
low users to monitor battery levels and the status of the con-
trollers. A run-stop widget, which disables the robot motors,
allows users to halt the robot’s motion in case of an emer-
gency or unexpected robot behavior.

4.3 User Interaction

In order for the remote lab to be useful, users must be able
to interact with the robot on a variety of different levels. Dif-
ferent research projects may require different interfaces. Ad-
ditionally, frequent tasks may be automated to reduce the
burden upon the remote operator. In this section, we de-
scribe four types of user interaction we have currently im-
plemented for the remote lab.

Int J Soc Robot (2012) 4:449–461 455

Fig. 4 Example interface with point cloud visualization and keyboard
control

4.3.1 Keyboard Teleoperation Interface

The keyboard teleoperation interface allows the user to use
the keyboard to control the head’s pan and tilt mechanisms,
and to control the motion of the arms. Additionally, it allows
users to control the base using a virtual joystick controller.
In order to use keyboard control for manipulation, the user
selects the desired arm through the interface and turns on
control. Key commands issued by the user are translated into
a new end position of the hand and sent to a Cartesian con-
troller. An example of an interface with instructions for key
control is shown in Fig. 4.

4.3.2 Mouse Teleoperation Interface

While accurate, keyboard teleoperation can be tedious, non-
intuitive and frustrating for users. As part of the develop-
ment of the remote lab project, we created a puppeteer in-
terface that allowed users to select the arm of the robot and
move it to specified locations. With the introduction of in-
teractive markers,5 a generic 3D interaction tool recently in-
troduced into ROS, we extended the interface to allow any
robot with an interactive marker interface to be controlled
through the web. Figure 5 displays a web-based interactive
interface for the PR2, along with control markers for manip-
ulating the head, base and right arm.

4.3.3 Prescripted Interface

The third type of interaction allows developers to provide in-
terfaces for frequently used actions. For example, the remote
lab includes a pick-and-place interface that allows users to
select objects. We extended the pick and place demo6 pro-
vided in ROS. The user interacts with the robot through a
series of buttons to command the robot to perform a set

5http://www.ros.org/wiki/interactive_markers
6http://www.ros.org/wiki/pr2_pick_and_place_demos

of actions, including detecting the table, detecting objects,
moving the arms to the front or side, as well as many oth-
ers. It is easy to imagine similar interfaces for other appli-
cations, including navigation where a user could click on
points on a map and then command the robot to navigate, or
other manipulation tasks within a kitchen where selecting a
door would command the robot to perform a door-opening
task. These interfaces are simple for users, but they perform
only as well as the autonomous algorithms they employ.

4.3.4 Scripting Interface

For advanced users a simple scripting interface consisting
of a text box and submit button is available. Users en-
ter and execute Javascript code, including new components
and classes, without the need of a server-side script. This
provides advanced users with the ability to write complex
robot controllers rather than issuing a set of “commands” as
in [24]. This enables users to test new code without chang-
ing the entire interface, as well as include Javascript code
from arbitrary libraries on the fly.

4.3.5 Discussion of Interaction Types

Each type of interaction has its own pros and cons and the
selection of an interaction mechanism depends on the in-
tended end user and the context in which they will be op-
erating. The keyboard interface and mouse interfaces can
be used by any type of user and provide low level con-
trol. Since users are directly controlling the robot they can
achieve a wide variety of tasks. The keyboard interface is
natural for navigation but it can be difficult to control high
degree of freedom manipulators due to the large number of
keys required to move the robot. The mouse interface pro-
vides more natural control but it requires the ability to rea-
son and control the robot in three-dimensional space, which
may be unintuitive to some users. The keyboard interface
is lightweight and generally responsive even on slower net-
work connections. The mouse interface requires rendering
the robot’s pose and environment in 3D, which may impose
a performance penalty.

Prescripted interfaces are the easiest of the interfaces to
use since they require button clicks. The interfaces are gen-
erally do not send large amounts of information. These inter-
faces are typically used for higher level control and depend
upon a great deal of robot autonomy. Thus, it can be difficult
to recover from unforeseen situations.

Scripting interfaces require programming experience and
are not appropriate for the general public. They offer the
ability to develop and test new robot functionality, but are
generally too cumbersome for one-time low-level control
movements.

http://www.ros.org/wiki/interactive_markers
http://www.ros.org/wiki/pr2_pick_and_place_demos

456 Int J Soc Robot (2012) 4:449–461

Fig. 5 Web interface with interactive marker control. Users control the
robot through the mouse by moving the various controls

5 Shared Experimentation

This section describes the implementation of the PR2 Re-
mote lab and how it was used in the AAAI LfD Challenge.

5.1 PR2 Remote Laboratory

The robot platform used in the remote laboratory described
in this paper is the PR2 personal robot [39], a two-armed
robot with an omnidirectional base. Equipped with two 7-
degrees-of-freedom compliant arms, the PR2 is designed for
compliant interaction with the environment. The compliance
is an important safety feature for the humans and objects that
may be present in the robot’s environment, as well as for the
robot itself when being used by a remote user. The PR2 has
an extensive sensor suite allowing remote users to perform a
variety of mobile manipulation tasks.

The remote lab environment shown in Fig. 6 is equipped
with additional sensors. Four cameras observe the robot’s
work-space and allow the remote user to see the PR2 and
objects in its environment. In addition to the 2D cameras, a
depth camera is used to acquire a 3D view of the remote lab.
A PhaseSpace optical motion capture system is used to ob-
tain ground truth pose information for the robot and objects.
The PhaseSpace system tracks active LED markers and pro-
vides highly accurate, real time motion data which is neces-
sary to update the remote lab’s state.

The software is structured on both the client and server
side. An overview is presented in Fig. 7. The client side
consists of a browser-based user interface implemented in
HTML and Javascript. On the server side software is roughly
divided into three main layers: hardware interfaces, ROS
middleware, and web services. The hardware interface layer
comprises a number of software modules concerned with re-
ceiving and timestamping the sensor data, as well as inter-
faces to the robot’s actuators.

Fig. 6 The PR2 Remote Laboratory the workspace is observed by
multiple cameras and a motion capturing system. The remote users see
and control the robot through a web-based interface

5.2 AAAI LfD Challenge

The 2011 Robot Learning from Demonstration Challenge
was held in conjunction with the AAAI Conference and
Robotics Exhibition. The challenge is an opportunity for
members of the LfD community to showcase their recent
results through presentations and live demos. In previous
years, participants demonstrated their research techniques
on a set of unrelated tasks. In order to better enable com-
parisons and cooperation, the 2011 LfD Challenge focused
on a single challenge task centered on food preparation. The
task required a combination of both low-level and high level-
skills, showcasing a variety of LfD techniques.

5.2.1 Shared Task: Breakfast for Two

The robot’s goal was to set the table for breakfast for two
people. The first person prefers cereal and tea. The second
person prefers toast, coffee, and juice. The robot must set
the table with objects that will help speed up the breakfast
process for the users.

The task involved a standard set of objects and a standard
setup. During the task the robot would navigate between
four pre-specified positions. At the beginning of the task ob-
jects are located in specified initial positions reachable on a
preparation table. The robot selects these objects and then
moves them to the appropriate location on the nearby din-
ing table. Specifications were provided for the positions of
the tables and the possible robot positions. The objects and
tables were widely available standard items and exact speci-
fications were provided so that teams with a PR2 that wished

Int J Soc Robot (2012) 4:449–461 457

Fig. 7 Flowchart of the remote lab’s software system. The software is
divided into three layers on the server side (hardware interfaces, ROS
middleware and web services) as well as a client-side user interface.

Shaded software nodes were developed in conjunction with the remote
lab described in this paper

to experiment locally could recreate the experimental set up
in their own lab.

In order to highlight different LfD techniques, there were
three classes of objects. The first class were objects that were
part of an object database provided with ROS and had pre-
computed grasps available. The second class of objects were
part of the object database but had no available grasps. The
third class of objects were not part of the object database and
had no default recognition or grasps.

5.2.2 Initial Preparations and Schedule

Once the challenge task was finalized, we created an initial
solution to the task to demonstrate that the robot was phys-
ically capable of completing the task. In order to perform
the task, we used a simple scripted high-level algorithm. We
used open-loop control to pick up and place the objects. The
pose of a pre-grasp and grasp position were recorded for
each object. When the high-level plan selects the next object
the arm moves to the predefined positions and then closes
the gripper. With careful placement of the objects we were
able to complete the majority of the challenge task. How-
ever, this solution is not robust and there is significant room
for improvement.

In addition to demonstrating feasibility, the code pro-
vided a set of interfaces for the participants. LfD algorithms
that used the same interface could easily be run as part of the
full system. This allowed algorithms to be evaluated within
the context of a complete task, something often neglected in

current research efforts. Additionally, researchers gained the
benefits of an integrated system. Algorithms could be com-
bined not only with provided scripted code, but also with
other LfD algorithms developed during the challenge. For
example, a researcher focused on low-level LfD can benefit
from improvements in a high-level planning system without
investing additional time and effort (and vice versa).

To help teams test code before performing experiments,
we provided a simulation of the challenge. The simulator
contained a subset of the provided objects and two tables.
Teams could run the provided code as well as test their own
code within the simulator. The simulator is not currently ca-
pable of being used as an exclusive development and testing
platform, but it provided an initial testing ground to discover
unexpected behavior.

The initial solution to the task was completed in May
2011. Teams began using the remote lab at the beginning
of June. For two of these teams the remote lab provided ex-
clusive access to the PR2. The LfD Challenge was held in
San Francisco on August 7–9. Teams actively used the re-
mote lab for about two months to develop and test their al-
gorithms.

5.2.3 Participants

Three teams (from École Polytechnique Fédérale de Lau-
sanne (EPFL), Massachusetts Institute of Technology (MIT),
and Worcester Polytechnic Institute (WPI)) used the PR2
Remote Lab as their primary development platform and

458 Int J Soc Robot (2012) 4:449–461

testbed in order to participate in the LfD Challenge. The
teams varied in location, academic experience and experi-
ence with the technology needed to participate in the chal-
lenge task.

The approach used by the team from EPFL focused on
learning low-level motion primitives, such as reaching for
a glass or pouring milk, from demonstration. The learn-
ing method, called Stable Estimator of Dynamical Systems
(SEDS) [21], models motions as a non-linear autonomous
dynamical system and defines sufficient conditions to ensure
global asymptotic stability at the target. The participants had
not used ROS before but had a completed algorithmic ap-
proach that was implemented and tested on another robot.
Their task was to port the existing proven technology to a
new platform and to demonstrate the generality of the ap-
proach.

The LfD approach used by MIT also focused on learning
of low-level motion primitives from demonstration. Specif-
ically their approach employed probabilistic flow tubes to
infer the desired state region at each time step from the data
provided by the demonstrations [15]. The participants had
no ROS experience, little experience with Linux, and had an
initial system implemented in Matlab. During the course of
the challenge this team’s task involved improving their pro-
posed algorithm for LfD as well as interfacing their Matlab
system with ROS. Additionally, this team had occasional ac-
cess to the PR2 located at MIT; however, their main testbed
was the PR2 Remote Lab.

WPI used Behavior Networks [27] to learn the task as a
high-level plan consisting of subgoals. In this approach, the
agent continuously compares the current state of the world
to check if it has achieved one of the pre-defined subgoals
during the demonstration (e.g. holding the orange juice bot-
tle in one hand, while standing in front of the table). The
agent then creates a history of the subgoals reached. When
asked, the agent executes the actions necessary to reach the
subgoals, one by one, eventually accomplishing the main
goal of the task. This team had used ROS extensively in pre-
vious research projects and had helped develop a widget that
displayed currently available topics for the remote lab. This
team spent much of the preparation time developing new al-
gorithms.

5.2.4 Development Using the Remote Lab

In addition to web interface access, teams were provided
with accounts on the robot and remote login access. In-
dividual weekly meetings were set up for each team with
Bosch RTC personnel. These meetings were used to discuss
progress, troubleshoot problems, and discuss requirements.

We made use of a Google calendar to manage the robot’s
time. This calendar was shared not only by the teams but
also by the research associates and summer interns at Bosch

RTC. Timesharing of an expensive robot platform was one
of the larger goals of the project. Many of these expensive
platforms are often idle. The goal was that researchers would
be able to use the remote lab without supervision especially
during times when it was unlikely to be used. Teams used
approximately 33 % of the scheduled robot hours between
June 12 and August 6. 62 % of that time was performed
outside of the hours of 7 am–7 pm.

An important aspect of the challenge was providing
demonstrations. The team from WPI collected data using
calls to interfaces that moved the arms to specified loca-
tions via Cartesian control and the base to one of the fixed
positions. However, gathering demonstration data for teams
learning motion primitives proved more challenging. While
the keyboard interface allowed the researchers to control
the robot’s arms, it was difficult for researcher to perform
smooth natural motions. To overcome this difficulty, a par-
ticipant from EPFL visited Bosch RTC in conjunction with
nearby conferences. Researchers at Bosch RTC also pro-
vided a small number of demonstrations, around 5–10 exam-
ples, for a set of desired tasks. Due to the shared infrastruc-
ture both teams learning low-level motion primitives were
able to share data.

5.2.5 Observations and Lessons Learned

In this section, we report observations and survey responses
regarding the value of such labs as a research tool for re-
mote development and LfD. Specifically, the teams were
asked how comfortable the users were with the technology
before and after they started using the remote lab, how long
it took until they were comfortable using the lab, how long
it took until they had preliminary demonstrations working,
how much time they spent using the remote lab, the simula-
tor, and integrating with remote lab personnel, which moni-
toring, control interfaces, and ROS features they used, how
they thought the remote lab could be improved, and how
the remote lab compares to hardware platforms used in the
past. These interviews were conducted seven months after
the event, and the data below reflect the teams’ self-reports
from memory.

Working with the remote lab was easiest for the for
the group who had prior experience developing interfaces
for the remote lab. Generally, working with the remote lab
was easiest for groups who had a fully-developed code-
base. However, these groups had less desire to invest time
into learning new interfaces. The remote lab was a tool for
the challenge rather than a potential long term development
platform. Thus interfaces needed to be intuitive and easy to
use. On average the time for teams to become comfortable
using the remote lab was about 6 and a half days. The team
with the most remote lab experience took 3 days while the

Int J Soc Robot (2012) 4:449–461 459

team with the least ROS experience took 10 days. Addition-
ally, two teams reported having preliminary demonstrations
within 7 days and the other team reported 14 days.

Two remote lab teams felt that the user interface could
be improved. The set of interaction tools available to remote
lab participants did allow teams to interact with the robot,
such as by using control interfaces to move objects back to
desired locations after a preliminary controller failed. How-
ever, designing appropriate, intuitive interfaces for learn-
ing tasks will form a substantial research agenda in human-
robot interaction, one which benefits greatly from a remote
lab platform for evaluation. For example, we implemented
mouse-based interfaces after the teams started using the re-
mote lab, based on their suggestions.

The team from MIT had limited access to the PR2 at their
institution. Even so, using the remote lab provided them
with several benefits. It allowed them to leverage the shared
infrastructure and manpower discussed earlier in this paper.
Additionally, it provided the ability to benchmark a task in
a set, well defined environment. Algorithms could be com-
pared on the same setup that other challenge teams were us-
ing making future results more comparable. They also were
able to easily transfer interfacing code from the remote lab
to their local PR2, demonstrating the versatility of this in-
frastructure.

Integrating the physical remote lab system with informa-
tion about web usage would be helpful. Physical cues would
allow users within the remote lab space know that a remote
user was in control of the robot. This would improve safety
since local users would be more aware that the robot might
move at any moment. It would also enhance resource shar-
ing: local users could see if a remote user had logged off
slightly early from their scheduled time. Additionally, with
the proper technology remote users could recruit the help of
local researchers. For example, if a remote user was per-
forming a manipulation task and an object had fallen to
a spot where they were unable to reach it they could ask
someone to help them replace the object in the experimental
space. This means that any local user could help, rather than
the small subset of the researchers with whom the remote
users were accustomed to working.

Two remote lab teams felt that the sensing capabilities of
the remote lab could be improved. One possibility for extra
sensors would be to create tools to enable instrumentation
of the remote lab with audio capabilities. This would enable
research using voice commands for LfD. Audio feedback
would also alert users to unexpected collisions or accidents
that were out of the view of cameras.

All teams reported a higher comfort level after the chal-
lenge. When compared to previous systems all of the teams
felt that the remote lab was “much better at enabling compa-
rable experiments.” Teams also felt that the remote lab was
better at enabling first-time users to get something working

and enabling code sharing. Generally the teams felt the re-
mote lab was about the same as other platforms in terms of
providing feedback and sensing information. They did not
feel the remote lab was better at controlling mobility or man-
aging manipulators. As researchers continue to build and use
remote lab systems, feedback such as this should help in the
improvement of interface design, much as we were able to
incorporate suggestions during the LfD Challenge.

6 Conclusion and Future Work

This paper presented technology for the creating of remote
labs, and documented the specific development of the PR2
Remote Lab. This technology is available as open source
ROS packages in the bosch-ros-pkg7 and the brown-ros-
pkg.8 The goal of this project is to create infrastructure to
enable more teams and groups of researchers access to state-
of-the-art robotics platforms as well as to enable researchers
to expose their research to the public at large through the
internet. We described the first test case of the PR2 Remote
Lab for shared experimental development in which teams
used the system to test and develop LfD algorithms for the
2011 Robot Learning from Demonstration Challenge.

This project highlights several promising areas of future
work. The importance of natural intuitive user interfaces was
highlighted during our work on the remote lab. Creating in-
terfaces that can control high-degree-of-freedom arms while
also being intuitive and usable with commodity hardware,
for example a mouse and keyboard, is an important but chal-
lenging task. Some recent efforts have begun to examine
human-in-the-loop, or shared autonomy interfaces [26, 32].
However, evaluation of the usability of existing interfaces
as well as creation of better interfaces is a worthwhile effort.
Once such interfaces are possible, we can achieve truly large
scale learning from demonstration for manipulation tasks.
Given the promising results in the vision [20] and the nat-
ural language processing communities [36], it is likely that
applying similar large data-driven approaches to real-world
policy learning will bear fruit.

Additionally, we hope to extend access to the remote lab
to a larger audience. Some technology improvements will
be required for a larger number of users. Security mech-
anisms must be designed to handle large number of users
all through a web interface. For example, only the person
scheduled to control the robot would have access to some
topics while other users may still be allowed to view the
data. Scheduling could also be more integrated into the re-
mote interface. While these capabilities have been imple-
mented in Rosbridge more testing and full integration is re-
quired. The current means of selecting which widgets and

7http://bosch-ros-pkg.sourceforge.net/
8http://code.google.com/p/brown-ros-pkg/

http://bosch-ros-pkg.sourceforge.net/
http://code.google.com/p/brown-ros-pkg/

460 Int J Soc Robot (2012) 4:449–461

data types must be viewed is done through code. A more
dynamic interface would allow users to select widgets and
data they wish to use for an experiment on the fly.

References

1. Abbeel P, Ng AY (2004) Apprenticeship learning via inverse rein-
forcement learning. In: Proceedings of the 21st international con-
ference on machine learning

2. Aldridge H, Bluethmann W, Ambrose R, Diftler M (2000) Control
architecture for the robonaut space humanoid. In: Proceedings hu-
manoids 2000, the 1st IEEE/RAS conference on humanoid robots

3. Argall BD, Chernova S, Veloso M, Browning B (2009) A survey
of robot learning from demonstration. Robot Auton Syst 57:469–
483

4. Atkeson CG, Schaal S (1997) Robot learning from demonstra-
tion. In: Fourteenth international conference on machine learning
(ICML), Nashville, TN, pp 12–20

5. Billard A, Calinon S, Dillmann R, Schaal S (2008) Robot pro-
gramming by demonstration. In: Handbook of robotics. Springer,
Secaucus

6. Burgard W, Schulz D (2002) In: Robust visualization for online
control of mobile robots. MIT Press, Cambridge, pp 241–258

7. Calinon S, Billard A (2007) Incremental learning of gestures by
imitation in a humanoid robot. In: Second conference on human-
robot interaction (HRI), Arlington, Virginia

8. Callaghan M, Harkin J, Prasad G, McGinnity T, Maguire L (2003)
Integrated architecture for remote experimentation. In: IEEE inter-
national conference on systems, man and cybernetics, 2003, vol 5,
pp 4822–4827

9. Casini M, Prattichizzo D, Vicino A (2004) The automatic control
telelab: a web-based technology for distance learning. IEEE Con-
trol Syst Mag 24(3):36–44

10. Casper JL, Murphy RR (2002) Workflow study on human-robot
interaction in USAR. In: Proceedings of the 2002 IEEE interna-
tional conference on robotics & automation, pp 1997–2003

11. Chernova S, Veloso M (2007) Confidence-based policy learning
from demonstration using gaussian mixture models. In: Interna-
tional conference on autonomous agents and multiagent systems
(AAMAS)

12. Chernova S, Orkin J, Brazeal C (2010) Crowdsourcing HRI
through online multi-player games. In: Proceedings of the AAAI
2010 fall symposium on dialog with robots

13. Crick C, Jay G, Osentoski S, Pitzer B, Jenkins OC (2011) Ros-
bridge: Ros for non-ros users. In: Proceedings of the 15th interna-
tional symposium on robotics research (ISRR)

14. Crick C, Osentoski S, Jay G, Jenkins OC (2011) Human and
robot perception in large-scale learning from demonstration. In:
6th ACM/IEEE international conference on human-robot interac-
tion

15. Dong S, Williams B (2010) Motion learning in variable environ-
ments using probabilistic flow tubes. In: 2011 IEEE international
conference on robotics and automation (ICRA), pp 1976–1981

16. Ferrero A, Salicone S, Bonora C, Parmigiani M (2003) Remlab: a
java-based remote, didactic measurement laboratory. IEEE Trans
Instrum Meas 52(3):710–715

17. Fu M, Yeo C, Lin Y, Wang F (2001) Waves: towards real time
laboratory experiments in cyberspace. In: IEEE international con-
ference on systems, man, and cybernetics, vol 5, pp 3470–3474

18. Goldberg K, Dreyfus H, Goldman A, Grau O, Gržinić M, Han-
naford B, Idinopulos M, Jay M, Kac E, Kusahara M (2000) The
robot in the garden: telerobotics and telepistemology in the age of
the Internet. MIT Press, Cambridge

19. Grollman DH, Jenkins OC (2008) Sparse incremental learning for
interactive robot control policy estimation. In: International con-
ference on robotics and automation (ICRA)

20. Hayes J, Efros A (2008) Scene completion using millions of pho-
tographs. Commun ACM 51(10):87–94

21. Khansari-Zadeh SM, Billard A (2011) Learning stable nonlinear
dynamical systems with gaussian mixture models. IEEE Trans
Robot 27(5):943–957

22. Konidaris GD, Kuindersma SR, Barto AG, Grupen RA (2010)
Constructing skill trees for reinforcement learning agents from
demonstration trajectories. In: Advances in neural information
processing systems 23 (NIPS 2010)

23. Li L, Wang FY, Lai G, Wu F (2003) Online autonomous guidance
system for remote experiments in control engineering. In: IEEE
international conference on systems, man and cybernetics, vol 3,
pp 2444–2449

24. Marín R, Sanz PJ, Del Pobil AP (2003) The uji online robot: an
education and training experience. Auton Robots 15:283–297

25. Marín R, Wirz R, Sanz P, Fernández J (2007) Internet-based tele-
laboratory: remote experiments using the snrp distributed network
architecture. In: Advances in telerobotics. Springer tracts in ad-
vanced robotics, vol 31. Springer, Berlin, pp 429–444

26. Meeussen W, Marder-Eppstein E, Watts K, Gerkey BP (2011)
Long term autonomy in office environments. In: ICRA 2011 work-
shop on long-term autonomy. IEEE Press, Shanghai

27. Nicolescu M, Matarić MJ (2002) A hierarchical architecture for
behavior-based robots. In: 1st international joint conference on au-
tonomous agents and multi-agent systems (AAMAS), pp 227–233

28. Nicolescu M, Matarić MJ (2003) Natural methods for robot task
learning: instructive demonstration, generalization and practice.
In: 2nd international joint conference on autonomous agents and
multi-agent systems (AAMAS), pp 241–248

29. Okamura A (2004) Methods for haptic feedback in teleoperated
robot-assisted surgery. In: Industrial robotics, pp 499–508

30. Osentoski S, Jay G, Crick C, Pitzer B, DuHadway C, Jenkins OC
(2011) Robots as web services: reproducible experimentation and
application development using rosjs. In: Proceedings of the 2011
IEEE international conference on robotics & automation

31. Pastor P, Kalakrishnan M, Chitta S, Theodorou E, Schaal S
(2011) Skill learning and task outcome prediction for manipula-
tion. In: Proceedings of the 2011 IEEE international conference
on robotics & automation (ICML 2011)

32. Pitzer B, Styer M, Bersch C, DuHadway C, Becker J (2011) To-
wards perceptual shared autonomy for robotic mobile manipula-
tion. In: 2011 IEEE international conference on robotics and au-
tomation (ICRA 2011)

33. Quigley M, Conley K, Gerkey BP, Faust J, Foote T, Leibs J,
Wheeler R, Ng AY (2009) Ros: an open-source robot operating
system. In: ICRA workshop on open source software

34. Schulz D, Burgard W, Fox D, Thrun S, Cremers AB (2000) Web
interfaces for mobile robots in public places. IEEE Robot Autom
Mag 7:48–56

35. Smart WD, Kaelbling LP (2002) Effective reinforcement learn-
ing for mobile robots. In: 2002 IEEE international conference on
robotics and automation (ICRA), pp 3404–3410

36. Talukdar PP, Jacob M, Mehmood MS, Crammer K, Ives ZG,
Pereira F, Guha S (2008) Learning to create data-integrating
queries. In: Proceedings of the twenty-second international con-
ference on computational linguistics, pp 737–744

37. Taylor K, Trevelyan J (1995) A telerobot on the world wide web.
In: National conference of the Australian robot association

38. Trevelyan J (2004) Lessons learned from 10 years experience with
remote laboratories. In: International conference on engineering
education and research progress “Through partnership”

39. Willow Garage: Personal Robot 2 (PR2). http://www.
willowgarage.com

http://www.willowgarage.com
http://www.willowgarage.com

Int J Soc Robot (2012) 4:449–461 461

40. Ziebart BD, Maas A, Bagnell JD, Dey AK (2008) Maximum
entropy inverse reinforcement learning. In: Proceedings of the
twenty-third AAAI conference on artificial intelligence

Sarah Osentoski is a Research Engineer at the Bosch Research and
Technology Center. She received her Ph.D. in Computer Science from
the University of Massachusetts Amherst and was a postdoctoral re-
searcher at Brown University.

Benjamin Pitzer is a Senior Research Engineer at the Bosch Research
and Technology Center and received his Ph.D. from the Institute for
Measurement and Control of the Karlsruhe Institute of Technology.

Christopher Crick received his Ph.D. in computer science from the
Social Robotics Laboratory of Yale University in 2009, and is now a
postdoctoral research associate at Brown University.

Graylin Jay is an independent developer and a researcher at Brown
University.

Shuonan Dong is a graduate researcher in the Computer Science and
Artificial Intelligence Lab at MIT.

Daniel Grollman is a postdoctoral fellow at the LASA Laboratory at
EPFL. He received his B.S. (2003) in Electrical Engineering and Com-
puter Science from Yale University, and his Sc.M. (2005) and Ph.D.
(2010) in Computer Science from Brown University.

Halit Bener Suay is a Ph.D. student and a Research Assistant at
Worcester Polytechnic Institute, Robotics Engineering. In 2011, he
joined Robot Autonomy and Interaction Lab. He has a B.Sc. and a
M.Sc. degree in Aeronautics Engineering from Istanbul Technical Uni-
versity and The University of Tokyo.

Odest Chadwicke Jenkins is Associate Professor of Computer Sci-
ence at Brown University and head of the Robotics, Learning and Au-
tonomy at Brown (RLAB) research group.

	Remote Robotic Laboratories for Learning from Demonstration
	Abstract
	Introduction
	Related Work
	Web-Based Laboratories for Learning from Demonstration
	Tools for Remote Robotic Laboratories
	Rosbridge
	Creating Web Interfaces
	Video Visualization
	rosjs
	3D Web Visualization
	Widgets
	Data Logging
	Robot Monitoring

	User Interaction
	Keyboard Teleoperation Interface
	Mouse Teleoperation Interface
	Prescripted Interface
	Scripting Interface
	Discussion of Interaction Types

	Shared Experimentation
	PR2 Remote Laboratory
	AAAI LfD Challenge
	Shared Task: Breakfast for Two
	Initial Preparations and Schedule
	Participants
	Development Using the Remote Lab
	Observations and Lessons Learned

	Conclusion and Future Work
	References

