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ABSTRACT
Instructing human novices on complex tasks in non-standardized
environments are an underexplored potential use for social
co-robots, since instruction and skill transfer involving hu-
man experts can require an enormous commitment of time
and resources. In this paper, we enable a humanoid Bax-
ter robot to build a semantically accessible framework for
task learning, teaching and representation via active learn-
ing with human experts using hierarchical semantic labels.
This process not only helps the robot to learn tasks from
expert demonstrations, but later improves the ability of the
robot to teach novice human operators. Our results show
that the better-understood learning from demonstration (LfD)
task is greatly enhanced by the active learning and mu-
tual semantic structure building in a expert-robot partner-
ship, while the robot’s ability to teach novices is improved,
though the results are suggestive rather than conclusive at
this point. We discuss the important aspects and power
of learning and teaching from demonstration and how both
benefit from communication and joint human-robot creation
of semantic hierarchies.

1. INTRODUCTION
Learning from demonstration (LfD) [1, 2] enables end-

users to teach tasks to robots without traditional program-
ming. This hopefully involves less time and effort and adds
more flexibility for non-expert use of robots in a wide ar-
ray of circumstances. LfD is a well-studied problem, though
a great deal of research work remains before its promise
is realized. In this work, we not only explore the use of
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building a human-understandable representation of a com-
plex task through active learning and a conversational inter-
face to improve the LfD process, but we explore the prob-
lem of robotic teaching as well. A set of American Sign
Language (ASL) motions is taught to the humanoid robot
Baxter, which learns to communicate the sentence “Hello,
please listen to me” using its left arm. During the learning
process, Baxter can request information from the human ex-
pert using label and demonstration queries. While learning,
the robot is able to segment and hierarchically construct the
components of the demonstrated task using expert feedback.
This enables the human expert operator to understand the
learning activity of the robot and jointly guide the teaching
process, depending on the input the robot receives from the
end-user.

While learning from demonstration, the robot improves its
learned model by interacting with its human teacher and co-
operatively building a structure of hierarchical semantic la-
bels [3, 4, 5], as illustrated by our experimental results. The
goal of the work described here is to create robots with suffi-
cient human-accessible task understanding so that they can
act as successful tutors or coaches for complex skill learning.
Compared to experts, novice learners are often unsuccessful
at noticing important information and task patterns. They
fail to prioritize subtasks in terms of their importance to
the overall goal, and hence tend to attend inappropriately
to distracting or irrelevant aspects of the task environment.
If the entire task can be segmented into well-organized sub-
tasks with meaningful labels, the novice should be better
able to distinguish relevant relationships, and should learn
better.

In this paper we quantify the performance of Baxter as
a learner and a teacher using the root-mean square error
(RMSE) of the robot’s arm trajectories, compared to a gold-
standard task demonstration. When Baxter is employed as a
learner, the RMSE is calculated comparing the task success
under traditional LFD versus query-driven active learning
which jointly builds a semantic structure with a human ex-
pert. Participants are recruited to act as experts and novice
human operators. The participants allotted in the novice
group are taught by Baxter with and without this semantic
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scaffolding. The RMSE is calculated comparing the perfor-
mances of these two groups to evaluate their performance.

2. RELATED WORK
Many contemporary researchers are now working in the

fertile field of LfD, and a few of them are discussed in this
section.

2.1 Robot Learning from Demonstration
Konidaris [6] describes robots that can learn from tra-

jectory demonstrations by constructing skill trees (CST).
Chains from multiple human expert demonstrations can be
merged into a single skill tree with a policy learning algo-
rithm which efficiently increases robot learning rate. Crick
[7] and Knox [8] illustrate that human experts directly teach-
ing a robot is usually a better option than the same robot
learning virtually, as humans have better understanding of
the environment and a better decision making ability than
unsophisticated robotic controllers. Similar work has been
performed by Grizou [9], where unknown human teaching
instructions are utilized by the robot to improve its learn-
ing. This work addresses how a robot can use unfamiliar and
noisy teaching instructions to acquire knowledge to generate
new tasks, and use that knowledge to improve its learning
policy in an inverse reinforcement learning domain. While
interacting, the robot tends to ask different questions to the
end-user. Cakmak [10, 1] describes different platforms where
the robot is trained to ask good questions and how their per-
formance is improved via human feedback.

2.2 Robot Teaching via Demonstration
Humans have distinct teaching strategies [11] which can be

effectively utilized in human-robot communication to build
effective robot learners. A robot learning from human feed-
back tends develop a mental model of its own which can
be later utilized to teach novice human operators. Scassel-
lati [12][13] discusses human-robot collaboration for social
good. If robots and humans can interact on an interper-
sonal level, achieving complex tasks is easier. In this work,
feedback-based human-robot interaction demonstrates that
if humans are guided by the robot or vice-versa, relevant
questions are addressed, and with continuous collaboration
the task becomes easier. If robots are able to teach human
novice operators, this can improve their social reliability and
enhance people’s eagerness to interact with them. In this
work, we describe human-robot interaction where the robot
acts a teacher to guide humans to achieve complex sets of
tasks.

3. HIERARCHAL SEMANTIC LABELS IN
ACTIVE LEARNING

In comparison to traditional flat labeling [4], hierarchical
semantic structures are more successful at capturing impor-
tant information during a task execution. Within the frame-
work of active learning and with the robot’s participation,
we generate hierarchal semantic labels for defining and mod-
eling the robot’s task. This is built from a set of queries
and provides a better understanding of the task. These
meaningful labels are important to establish relationships
between subtasks, generating a human-accessible cognitive
framework which can be later utilized to teach a novice hu-
man human operator.

3.1 Learning using Semantic Labels
In this work, we use a segmentation method based on ac-

tion primitives to identify important change points and low
confidence motions, indicating poses where the robot should
ask disambiguating questions to the expert. The queries
are answered with semantic labels and demonstrations, and
these are later utilized for teaching purposes.

3.1.1 Action primitive based change point identifica-
tion

Expert user demonstrations are taken into consideration
to generate the learned motion, which is later passed through
a segmentation algorithm to initiate the learning process in
an action primitive framework. Action primitives are the
fundamental building blocks of a complex task [14], and
can be used to project user actions from controller inputs.
Since the model requires instructor intervention using a joy-
stick, action primitive based segmentation is preferred over
trajectory-based methods like dynamic motion primitives
(DMP) [15]. Within the segmentation algorithm, the contin-
uous state action spaces are decomposed into discrete state-
action pairs which later give the user insight into the number
of unique classes derived from the action primitives.

Demonstrations D1, D2, D3, . . . , Dn are given by the ex-
pert demonstrator to generate the learned motion L using
dynamic time warping with barycenter averaging (DBA) [16,
17]. This learned motion L obtained from the robot consists
of the joint positions xt and joint velocities vt for J joints
over time T = {t1, t2, t3, . . . , tn}. Since any joint j provides
a single degree of rotational freedom, three broad joint move-
ments are possible: 1) counter-clockwise, 2) stationary (with
some assumed noise), and 3) clockwise, S = {1, 2, 3}. In our
model, the action primitives are not differentiated on by the
magnitude of the joint velocity (although nothing prevents
this in our approach), only the direction. The sign lan-
guage demonstration uses six degrees of freedom in the left
arm, two each of shoulder, elbow and wrist joints denoted
s0, s1, e0, e1, w0 and w1. Hence at a particular time t, if the
action primitive consists of αt = [122123]T , then s0 and e1
are moving counter-clockwise, s1, e0 and w0 are stationary
(possibly with some noise), and w1 is moving clockwise.

Action primitives generated by considering the joint posi-
tions xτ and the signs of the joint velocities vτ are used as in-
put to our segmentation algorithm over time τ = {τ1, . . . , τn}.
To define the distribution of each action primitive class, sam-
pled velocities are clustered assuming a Gaussian distribu-
tion for each cluster. Let vτj be the sampled velocity of joint
j; then to determine clusters we use k-Means with k = 3 for
states S = {1, 2, 3}. Based on these parameters, we calculate
the mean µji and the variance σ2

ji to define the probability
distribution:

p(rj = i|vτj) = N(vτj |µji, σ2
ji) (1)

and assign the variable rj for each joint j as follows:

rj = 2, p(rj = 2) > η
rj = 1, p(rj = 1) > p(rj = 3)
rj = 3, p(rj = 3) < p(rj = 1)

(2)

where η is a noise threshold computed from a hand-labeled
trajectory. This procedure is repeated for each time in-
stant to generate the class of each action segment. Now the
similar neighbouring segments are merged with each other
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to find the unique action primitives Ai = n(ai) over time
τ = {τi, τi+1, τi+2, . . . , τn}. Each segment is considered as
a subtask, and the subtask boundaries, or change points,
are considered to be profitable points for obtaining expert
feedback.

From the learned sign language motion L, the algorithm
identified 20 unique classes of change points, which became
the basis for establishing a semantic structure based on ac-
tive learning queries, as described in the next section. Each
class is associated with a unique trajectory. Since the com-
plex motion contains a sequence of sub tasks, repetition of
the same classes after certain intervals is a common phe-
nomenon. Fig. 1 illustrates the outcome of query based
learning; the basic components of the structure are identified
using the change point algorithm [2, 8], while the organiza-
tion and semantic content of the structure are determined
from queries.

3.1.2 Query based learning
Active learning using queries to leverage human task un-

derstanding and effort cooperatively creates an informative
task representation useful to both humans and robots. Af-
ter subtask segmentation and change point generation, the
subtask boundaries are used to generate label and demon-
stration queries for each point.

1. Is the motion correct?

2. What is the name of this motion?

3. Please show me the demonstration?

The first two are the label queries and the third is the
demonstration query. If the answer to the first question is
yes it proceeds to the second question for the semantic label
and saves the motion. If the answer of the first query is no ,
then it asks the third question and saves the demonstrated
motion and the corresponding query.

If the answer to the first query is unimportant, it does
not save that particular motion or state and proceeds to the
next motion without asking any further questions, as the
motion is irrelevant to that particular task.

As an example, in one interaction with an expert, after the
segmentation process, the robot asked twice for demonstra-
tions at different subtask boundaries, and two movements
were discarded as unimportant. Fig. 1 clearly depicts the
entire semantic structure learned by the robot, after both
task segmentation and query-driven structure building. The
blue boxes denote the primary and the secondary tasks to
be performed by the robot. The red boxes denote the dis-
covered motions by the robot at each change point. The red
circles denote the endpoints of a task. After the demonstra-
tion, the robot returns to the position where the last subtask
ended and progresses to the next motion from there. The
green boxes designate repeating subtasks, discovered when
the robot learned their appropriate semantic labels. When
the expert demonstrator provides a label in response to the
robot’s first question, the system matches with the precon-
ditions or previous learned semantic labels. If the labels
already existed the robot announces, “I know this motion”
and executes the trajectory by itself. Alternately, it commu-
nicates, “Sorry, this is new to me”. Thus the entire move-
ment is executed by the robot with human expert feedback,
is saved as a semantic hierarchical structure, and is later
utilized to teach novice human operators.

Figure 1: An example of a learned semantic hier-
archical structure, obtained by task segmentation,
change point detection, and label and demonstra-
tion queries obtained in conversation with an expert
demonstrator.

3.2 Teaching using Semantic Labels
After the learning process with human interaction, the

robot is employed to demonstrate and teach the same task
to a novice human operator. Each subtask with its corre-
sponding semantic structure and label is used for the teach-
ing purpose [5]. The novice human operator observes the
task demonstration with the labels and gains a better un-
derstanding of the motion and the task. In section 5, we
demonstrate an experiment which explores the performance
difference between novices who are taught merely by demon-
stration, without the semantic scaffolding developed during
the teaching task, and novices who have the advantage of
human-accessible semantic structure.

4. EXPERIMENT: ROBOT LEARNING
FROM DEMONSTRATION

In this experiment participants are recruited as experts
to demonstrate an American Sign Language (ASL) motion
to the robot using a joystick in an HRI setting. During
the experiment, the complex task given to the participant
to perform demonstrates the signs for “Hello, please?”. The
original experiment design incorporated the whole sentence
“Hello, please listen to me” but it was scaled back to the
simpler phrase, involving only 9 control inputs, due to time
constraints. The test subjects recruited were not well ac-
quainted with robotic motions or with the control inputs, al-
though they knew the intended ASL motion. Hence their in-
teractions with the robot are expected to be naive, and their
responses to the robot’s asking them for labels or demonstra-
tions were expected to be interesting.

Only one sign language motion was used for the experi-
ment to maintain the reliability and the consistency of the
proposed model. The motion was one phrase, but actually
consisted of a series of small tasks that were required to be
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taught and mimicked with specific requirements for each mo-
tion and performed in a specific order. So while the motion
taken in its entirety consisted of a single phrase, the oper-
ation of the system required a complex series of tasks and
motions. Introducing more motions and phrases would have
required a large increase in the number of subjects and the
time commitment contributed by each, which was beyond
the scope and resources of the current study.

4.1 Procedure
In this experiment, n = 18 teaching trials were involved, 9

using a more traditional LfD technique and 9 in the seman-
tic structure and active learning scenario. During teaching,
subjects are provided with the joystick control details and all
the necessary hardware information regarding Baxter. Par-
ticipants in this group are made to learn a series of detailed
movements using the controller to transfer information to
Baxter. Participants practiced the skill set on the controller
under the guidance of the researchers for at least 40 minutes
prior to interacting with Baxter to become experts. They
performed the series of controls a minimum of four times
when interacting with Baxter in order to teach Baxter the
motions. These four demonstrations are used to generate
the learned motion L discussed in Section 3.1.

Participants in this group were asked to return after three
days to interact with Baxter when they are asked to teach
Baxter with the semantic structure interaction system. The
participants were asked to practice again under supervision
of researchers before they started interacting with the robot.
The entire interaction was recorded and the motion gener-
ated with this interaction is regarded as the semantically
learned motion.

Figure 2: RMSE for motion learned through mutual
construction of semantic sturcture is far better than
from dynamic time warping and barycenter averag-
ing alone (p < 0.002).

4.2 Results
Fig. 2 shows the comparative analysis between the tra-

ditional learned motion with the semantic learned motion.
Root mean square error (RMSE) of the joint positions are
calculated with respect to the ideal motion. Since the test
subjects are allowed to practice for a long time in both days

and also had expert supervision during the process the re-
sult is calculate irrespective of their joystick proficiency. A
t-test demonstrates the very high level of statistically signifi-
cant improvement between the behavior learned through the
process of change point detection and cooperative building
of a shared semantic representation of the task, and a mo-
tion learned simply from raw demonstrations. Semantically
guided task demonstrations lead to a mutually comprehen-
sible joint understanding of the task, and motion generated
from this process is much more accurate.

5. EXPERIMENT: ROBOT TEACHING VIA
DEMONSTRATION

This experiment involves performance analysis of partici-
pants when they are taught by the robot acting as an expert.
The robot taught them the same sign language motion used
for the experiment involving experts. In this experiment, the
subjects are asked to imitate the same task they are taught
by the robot, and return to demonstrate the task again after
an interval of at least three days. The goal of the experi-
ment was to evaluate the teaching action of a robot while
interacting with a novice. If the novice human operator suc-
cessfully manages to imitate the task taught by the robot,
then we can infer that the robot has taught that person
well, especially if the skill persists over time. Since seman-
tics play a great role in providing useful information, we used
our learned semantic model for teaching with semantic la-
bels along with the corresponding gesture. The experiment
is a between-subjects study where one group receives the
benefit of semantic structure, while the other only receives
demonstrations.

5.1 Procedure
In this experiment n = 38 subjects were involved. There

were 20 people in the semantic labeling group and 18 in the
control group. Participants in these groups learned to con-
trol the robot’s arm using a joystick controller to produce
the “Hello, please” sign language phrase which the robot
had learned from expert demonstrators. The self-reported
joystick proficiencies of the participants were noted at the
beginning of the experiment and used as a control. The
robot performs a motion and the participant attempts to
duplicate that motion using the controller device. During
the experiment the participants were provided with neces-
sary information regarding the robot and the functionality of
the joystick controller. They were allowed to take notes for
their convenience. On the first day of the experiment, both
groups of participants were allowed to see Baxter demon-
strating the task as many times as they wished, and could
practice for half an hour to get acquainted with the robot.
Since this group of participants were intended to be novice
human operators, they were not given any human guidance
from the researchers and were only allowed to learn from the
robot.

Subjects in the semantic structure group were“taught”us-
ing semantic labels assigned to each movement, which were
previously developed through active engagement with an ex-
pert as described in Section 4. These labels were broken
down to indicate the smaller actions that make up the entire
task. Participants followed the robot’s instructions to learn
the movements necessary for using the joystick controller to
perform the same actions, thereby mimicking the motions of
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an “expert”. The participants in this group can see the la-
bels and task structure on the monitor during the task and
are also given out handouts containing necessary informa-
tion about Baxter. During the experiment, since Baxter is
teaching them a new motion, no other human guidance is
involved.

Participants in the no semantic structure group were“taught”
without semantic labels, so that there are no associations be-
tween each smaller movement and any assigned categoriza-
tion or word. Participants are expected to follow the robot’s
demonstrations to learn the movements necessary for using
the joystick controller to perform the sign language task.
Participants in this group were only provided with the hand-
out containing important information about Baxter and the
joystick controller.

All of the participants in both groups were asked to re-
turn after at least two days and were asked to perform the
same movements on the robot. They were only given one
chance to perform the movement and were not allowed to
practice or see any demonstration, although they did first
have the opportunity to practice random movements with
the controller. The subjects in the no semantic structure
group were asked to move certain joints to perform their
motion, whereas the people in the semantic group were pro-
vided the semantic labels with which they were taught, as
instructions to execute the corresponding motion.

Figure 3: Performance analysis of the participants
on the first day of the experiment. No significant
difference between groups (p ≈ 0.5).

5.1.1 Subjective Performance Evaluation
In Fig. 3, which represents the initial training session

where the robot demonstrates the task, there is almost no
difference between the performances of the two groups. This
is because the subjects were allowed to see the task demon-
stration as many times as they wished and to practice it
several times to achieve adequate performance. Subjectively,
we observed that subjects in the semantic structure condi-
tion asked for fewer demonstrations than those of the group
without such structure. Since we determined that joystick
proficiency played an important role in subject performance,
and subjects were randomly assigned to the two groups, we
found that the mean self-reported joystick proficiency of the

Figure 4: Performance analysis of the of the partic-
ipants on the second day of the experiment. Differ-
ence is suggestive but not significant (p = 0.18).

non-semantic structure group (mean of 3.13 on a 5-point
Likert scale) was significantly higher than that of the se-
mantic structure group (2.51). Even when controlling for
this, however, no significant difference in task performance
was found.

Fig. 4 demonstrates that the subjects in the semantic
structure group may have been able to retain their task
expertise over a period of several days, compared to the
subjects who were not provided with the same level of se-
mantic assistance by the robot. A t-test shows a p-value of
0.18, suggestive but not a significant difference. Again, this
data is after controlling for self-reported joystick proficiency.
Subjects in the semantic structure condition may have had
a more thorough understanding of the task, but participants
in both groups had access to their notes, taken during the
initial teaching encounter, and this may have muted the ef-
fect. Even so, the non-semantic group did perform less well,
and a larger fraction had larger errors than in the semantic
group – just not to the level of statistical significance.

5.1.2 Discussion
The subjects provided with semantic structure happened

to have lower mean joystick proficiency than the other group.
We hypothesized that subjects learning with semantic labels
would retain the task better than the other group, although
we did not quite confirm this to a statistically significant
level, though we can still say that the robot made a de-
cent teacher. Since all of the subjects in both groups were
allowed to take copious notes and use them during the ex-
periment, we believe that the task execution challenge be-
came too easy, accounting for the relative success of the
non-semantic structure group. In addition, the chosen sign
language phrase may not have been sufficiently complex to
differentiate the learning process. Even so, the subjects in
the no semantic structure group did indeed perform less well
than those with access to human-accessible semantic guid-
ance.

Subjectively, participants without semantic labels more
often skipped trajectories and chose incorrect motions more
often. Since they were novice operators, they were not pre-
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cise about their movements. For example, in the first two
movements, the robot’s arm is aligned perpendicularly with
its shoulder in the ideal motion. However, the participants
sometimes failed to achieve this pose, which caused signif-
icant deviation since the shoulder joint influences the sub-
sequent position of all other joints. The subjects had little
understanding of how precise various actions needed to be,
and this was true for both groups. During the experiment,
the labels and structural information were displayed on a
monitor placed beside each candidate. It is likely the case
that the learning and teaching would have gone better with
a more audiovisual interaction. Without any audio, it was
difficult for some participants to keep track of the labels on
the screen and Baxter’s movement at the same time. Espe-
cially during fine trajectory adjustments, it was very difficult
to look at both the robot and the monitor simultaneously.
These are a few of the factors which might have influenced
the performance of the participants during the experiment
irrespective of their groups.

6. CONCLUSION
Our main contribution is to evaluate how robotic perfor-

mance can be improved by the collaborative construction of
a shared, human-accessible semantic task model, and how
that learned model can be of value in the further collabora-
tive teaching of novice human operators. We have demon-
strated a very significant improvement in robot learning
from demonstration using this framework, and also showed
some effect in the reverse problem of robot teaching via
demonstration. If humans and robots can jointly develop
and share cognitive task models, it should be of immense
help to both tasks. If robots can be taught in this fashion
by experts, it will assist robots to acquire complex skills,
and in addition can be utilized for teaching purposes. These
learned labelled models are human accessible and can be a
great tool for learning. Our research focuses on both the
learning and teaching aspect of the skill transfer problem,
where robots, after acquiring necessary skills from experts,
can teach the same to novices.
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