Problem 2.

(a) Basic idea: The machine nondeterministically guesses (when reading an input symbol 0) and raises a substring of \(0((0+1)^2)^*0\) that is forthcoming. \(0,1\)

\[
M: \quad \text{start} \rightarrow q_{\text{start}} \rightarrow o \rightarrow q_1 \rightarrow q_{\text{good}} \rightarrow q_{\text{even}} \rightarrow q_2 \rightarrow \varepsilon
\]

- \(q_{\text{start}}\): nondeterministically wait or guess on an input symbol 0
- \(q_1, q_{\text{good}}, q_{\text{even}}, q_2\): having encountered an input symbol 0, verify if a substring of the form \(0((0+1)^2)^*0\) appears.

Can verify that \(\forall x \in \{0,1\}^*\), \(M\) accepts \(x\) if \(x \in 0(0+1)*((0+1)^2)^+0(0+1)^*\).

(b) The given language is the disjoint union of the two languages:

\[
L_a = \{ x \in \{a,b,c\}^* \mid \#(a) \geq 3 \text{ and } 0 \leq \#(b), \#(c) \leq 2 \}
\]

\[
L_b = \{ x \in \{a,b,c\}^* \mid \#(a) \geq 3 \text{ and } 0 \leq \#(b), \#(c) \leq 2 \}
\]

Basic idea for constructing a DFA \(M\) accepting \(L_a\): each state has 3 components to record \(\#(a), \#(b), \#(c)\) in the input consumed so far.

\[
\Omega = \{ (i,j,k) \in \mathbb{N}^3 \mid i \geq 3, j \geq 2, \text{ and } k \leq 2 \}
\]

Start state: \((0,0,0)\)

Set of accepting states: \(\{(3,j_1,k) \mid 0 \leq j, k \leq 2\}\)
1-step transition function \(s : Q \times \{a, b, c\} \to Q \) is defined as:

\[
\begin{align*}
 s((i, j, k), a) &= \begin{cases} (i+1, j, k) & \text{if } i \leq 2 \\ (i, j, k) & \text{if } i = 3 \end{cases} \\
 s((i, j, k), b) &= \begin{cases} (i, j+1, k) & \text{if } j \leq 1 \\ \text{exceed} & \text{if } j = 2 \end{cases} \\
 s((i, j, k), c) &= \begin{cases} (i, j, k+1) & \text{if } k \leq 1 \\ \text{exceed} & \text{if } k = 2 \end{cases}
\end{align*}
\]

\(\forall \langle q_0, i, j, k \rangle, s(q_0, a, b, c) = q_{\text{exceed}} \)

A DFA \(M_b \) accepting \(L_b \) is similar.

A desired FA accepting \(L_a \cup L_b \) is:

\[
\begin{align*}
\text{start} &\rightarrow (q) \xrightarrow{\varepsilon} M_a \\
&\xrightarrow{\varepsilon} M_b
\end{align*}
\]

(c) Given that an FA \(M \) accepting \(L \) (without loss of generality, we may assume that \(M \) has one accepting state \(q_{\text{accept}} \)), we construct an FA \(M' \) accepting half \((L) \).

The basic idea is that \(M' \) keeps track of two states in \(M \) (using two coordinates/tracks in a state of \(M' \)):
"forward simulation" (For each input symbol read in \(M' \), \(M' \) uses first coordinate/track to simulate \(M \) on that symbol. At the same time, \(M' \) simulates the backward simulation starting at \(\text{accept} \) in \(M \).) Simultaneously, \(M' \) uses second coordinate/track to simulate \(M \) backwards on a guessed symbol.

\(M' \) accepts an input \(x \) if \(\text{forward simulation} \) (on \(x \)) and \(\text{the backward simulation} \) (on a guessed \(y \), \(|y| = |x| \)) are in a common state of \(M \).

Formally, assume that NFA \(M = (Q, \Sigma, \delta, q_0, \text{Accept}) \) accepts \(L \).

Construct an NFA \(M' = (Q', \Sigma, \delta', q'_0, F') \) as follows: \(Q' = Q \times Q \), \(q'_0 = (q_0, \text{Accept}) \), \(F' = \{(q, q') \mid q \in Q \} \), and \(\delta' : Q' \times \Sigma \rightarrow 2^Q \) is defined as:

\[
\forall (p, q) \in Q' \quad \forall a \in \Sigma \\
\delta'(p, q), a = \begin{cases} \delta(p, a) & \text{forward simulation} \\
\delta(p, a) \cap \{ b \in \Sigma \mid b \in Q \} & \text{guessed symbol} \\
\delta(p, a) \cap \{ b \in \Sigma \mid b \in \text{accept} \} & \text{backward simulation}
\end{cases}
\]
Problem 3. (Similar to Homework 1, problem 9)

\[L = \{ x \in \{0,1\}^* \mid x^r = x^3 \} \]

We show that there does not exist any DFA accepting \(L \).

Suppose the contrary that \(L = L(M) \) for some DFA \(M = (Q, \Sigma, \delta, q_0, F) \), where \(Q = \{ q_1, q_2, \ldots, q_n \} \) for some positive integer \(n \).

Consider the sequence of strings:

\[\gamma_1 = 0^n \]
\[\gamma_2 = 0^{n+1} \]
\[\vdots \]
\[\gamma_n = 0^n \]
\[\gamma_{n+1} = 0^{n+1} \]

By Pigeonhole Principle, there exist \(i \neq j \) such that \(\gamma_i = \gamma_j \).

The two inputs \(\gamma_i \) and \(\gamma_j \) cause two identical versions of \(M \), starting from \(q_1 \), to

The same state, say \(p \in Q \).

![Diagram](attachment:image.png)

Now, consider suffixing \(10^n \) to augment the two input strings \(\gamma_i \) and \(\gamma_j \) to \(\gamma_i 10^n \) and \(\gamma_j 10^n \), respectively.

Notice that:

The augmentation \(10^n \) causes the two versions of \(M \)

To a common state, say \(p'' \), respectively. (Why?)

But...
The input string 0^a10^b is a palindrome ($= L$), so M should accept 0^a10^b, i.e., $p' \in F$.

But, the input string 0^a10^b ($a \neq b$) is not a palindrome ($\neq L$), so M should reject 0^a10^b, i.e., $p' \notin F$, a contradiction!
Problem 6

Basic idea of constructing a DFA N is that it essentially mimics the behavior of M, but in addition, N keeps track of a bit that indicates if the state r has been visited.

The bit starts out as 0, and is flipped to 1 in the event that r is reached. The bit is never flipped back once it turns to 1.

The accepting states of N are of the form $(1,q)$ where $q \in F$ as they indicate that M is in an accepting state (q,F) and the state r has been visited.

$N = \left(\{0,1\} \times Q, \Sigma, \delta, (0,q_0), \{(1,q) | q \in F\} \right)$

where

$\delta : \left(\{0,1\} \times Q \right) \times \Sigma \rightarrow \left(\{0,1\} \times Q \right) \cup$

defined as:

$\delta'(0,q,a) = \begin{cases} (0, \delta(q,a)) & \text{if } \delta(q,a) \neq r \\ (1, \delta(q,a)) & \text{if } \delta(q,a) = r \end{cases}$

and

$\delta'((1,q),a) = (1, \delta(q,a))$.
Problem 6

Use the same construction given in the proof of Theorem 1.39, which shows the equivalence of NFAs and DFAs. We need only change F', the set of accept states of the new DFA. Here we let $F' = \mathcal{P}(F)$. The change means that the new DFA accepts only when all of the possible states of the all-NFA are accepting.