1. Read the notes above carefully.

2. For each of the following languages, construct a finite automaton (deterministic, nondeterministic, or nondeterministic finite automaton with ϵ-transitions) that accepts the language. Give the key idea(s) for your construction, and brief and precise interpretations for the states of the machine.

 (a) \[
 \{ x \in \{0,1\}^* \mid \#_0(x) = \#_1(x) \text{ and every prefix of } x \text{ has at most one more 0 than 1s and at most one more 1 than 0s } \}.
 \]
 (Note: $\#_u(v)$ denotes the number of occurrences of a substring u in a string v.)

 (b) \[
 \{ x \in \{0,1\}^* \mid \text{there exist two 0s in } x \text{ that are separated by a string of length 5k for some } k \geq 0 \}.
 \]

 (c) The set of all strings over the alphabet \{a, b, c\} that yield the same value when evaluated from left to right as right to left by “multiplying” according to the following table in Figure 1.

 For examples: \((a \circ b) \circ b = (c \circ b) = a\) and \((a \circ (b \circ b)) = (a \circ a) = a\), whereas \(((a \circ b) \circ c) = (c \circ c) = b\) and \((a \circ (b \circ c)) = (a \circ c) = c.\)

 \[
 \begin{array}{c|ccc}
 \circ & a & b & c \\
 \hline
 a & a & c & c \\
 b & b & a & c \\
 c & c & a & b \\
 \end{array}
 \]

 Figure 1: A non-associative multiplication table for \circ.

3. Convert the following nondeterministic finite automaton with ϵ-transitions, M, to an equivalent nondeterministic finite automaton M_1, and then using the Subset Construction to convert M_1 to an equivalent deterministic finite automaton M_2 with its inaccessible states removed. Explicitly and briefly write down each step which you perform, such as: (1) Computing all the ϵ-closures of the states of M, and showing complete state-transition diagrams of M_1 and M_2.

4. Do [Sip06]/[Sip13] Do Chapter 1, problems 1.33 and 1.41 by machine construction (deterministic, nondeterministic, or nondeterministic finite automaton with \(\epsilon \)-transitions). Give the key idea(s) for your construction, and brief and precise interpretations for the states of each machine.

6. Let \(\Sigma = \{0, 1\} \). Give a regular expression for each of the the following languages. Briefly and precisely annotate your answers.

 (a) All strings in \(\Sigma^* \) with at most three 0s.
 (b) All strings in \(\Sigma^* \) with a number of 0s divisible by three.
 (c) All strings in \(\Sigma^* \) with exactly one occurrence of the substring 000.

7. Recall that for two regular expressions (over an alphabet) \(r \) and \(s \), \(r = s \) means that \(L(r) = L(s) \). Prove or disprove the following for regular expressions \(r \) and \(s \) over an alphabet \(\Sigma \).

 (a) \((rs + r)^*r = r(sr + r)^*\)
 (b) \((r^*s)^* = (r + s)^*\)

8. Do [Sip06]/[Sip13] Do Chapter 1, exercise 1.21 (a). Notes: You may use the procedure presented in lecture. Show all the (important) intermediate work.

9. A finite automaton is called non-crossing if its state-transition diagram can be drawn in the plane without having any edge cross.

 (a) Prove that every regular language is accepted by a non-crossing finite automaton.
 (b) Construct a regular language that is not accepted by any non-crossing deterministic finite automaton.

10. Let \(L \) be a language over an alphabet \(\Sigma \) such that \(L \neq \emptyset, L \neq \{\epsilon\} \), and \(L^2 = L \). For each of the following parts, prove or disprove that:

 (a) \(\epsilon \in L \);
 (b) \(L \) is not a finite language (that is, \(|L| \) is not finite).