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Abstract

A subgroup of the unit quaternions is used to calculate 2D rotations. Benefits of using
quaternions over the more common methods include the ability to use the algebra of quater-
nions to find closed form solutions and the ability to use the same approach for both 2-D
and 3-D algorithms. The subgroup is applied to matching polygonal arcs of equal length
with the resulting solution being the smallest eigenvalue of a 2 x 2 matrix. This result is

then used to match a short arc to locations on a long arc.
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1 INTRODUCTION

Matching of polygonal arcs is a basic problem in computer vision. The problem of finding
an approximate match between short arcs and pieces of a long arc is known as the segment
matching problem [4], [1]. This problem has found many applications, e.g., shape and object
recognition, analysis of engineering drawings, character recognition, etc. ([1], [9], [11]). An
algorithm has been developed in Parsi et al. [10] using a least-squares approach to match
2-D polygonal arcs where a distance measure is defined for arcs and the best match between
two arcs is obtained by calculating, analytically, the relative position and orientation of the
arcs that minimizes the distance measure. In this paper the calculations in that algorithm
are simplified by finding a closed form solution to the minimum distance by using a subgroup
of the unit quaternions. The minimum distance is the smallest eigenvalue of a 2 x 2 matrix.
By using the full group of unit quaternions, matching of 3-D polygonal arcs may be done [6].

Planar rotations are normally represented by an angle of rotation around the origin. We
have found it advantageous to use quaternions to represent planar rotations. As we are
unaware of previous use of quaternions for planar rotations, we present an explanation of
using quaternions for 2-D rotations in section 2. In section 3 we highlight the previous results
from matching of 3-D arcs. Then in section 4 we derive new results for matching of 2-D arcs.

In section 5 we show experimental results and section 6 is the conclusion.

2 Quaternions for 2-D rotations

First we will give a brief review of quaternions. We will then show how to use a subgroup of
the unit quaternions to represent 2-D rotations.

Unit quaternions are often used to represent rotations on 3-D [3], [5]. A quaternion
has four components, q = ¢i + ¢2j + g3k + ¢4 which we shall represent as the vector
a4 = [q1,¢2,¢3,q2]". Addition of two quaternions is carried out by normal vector addition.

Multiplication of two quaternions may be calculated by matrix multiplication with the fol-



lowing method [12]: given two quaternions p and q then the quaternion multiplication is

p xq=R(q)p and is q x p = L(q)p where

g4 —q3 Q92 @ g4 g3 —q ¢1

g3 ds  —q1 42 —q3 Q4 91 42
R(q) =

—q2 ¢ g4 Q3 g2 —q1 44 Q3

-1 —q2 —Gq3 Q4 -1 —q2 —Gq3 Q4

It is well known (e.g. [7, p. 438]) that rotating a point v in the 3-D space may be done by

the quaternion multiplication v — qvq@ where the conjugate q = [—q1, —G2, — @3, ¢s]- Thus

the rotation matrix depending on q is just Rot(q) = L(q)R(q).

To use quaternions for 2-D rotations, we embed the 2-D plane in 3-D as the z = 0

plane. If we let @, be the set of unit quaternions of the form [0, 0, a, b] for any real a and b,

then @, is a subgroup of the unit quaternions, i.e., closed under quaternion multiplication

( q1 = [0,0,(11,1)1] and qy = [0,0,02,52] then qiqe = [03 0,a1by + agby, biby — (11(12]) and

inverse (q;* = q; = [0,0, —ay,b;] ). This subgroup represents the rotations around the

z axis in the X-Y plane. To apply a rotation 6 to a point v = (v,,v,) in the plane,

first embed v as the quaternion [vg,vy,0,0], next create the planar rotation quaternion

q = [0,0,sin(6/2), cos(8/2)], then qvq = L(q)R(Q)v = [v,, v,, 0, 0] where

v, cos(6/2)? — 2v, cos(0/2) sin(0/2) — v, sin(6/2)*

v, cos(0/2)* + 2v, cos(6/2) sin(6/2) — v, sin(0/2)*

which is the rotation of v around the z axis by 6.

Thus we can use the algebra of quaternions to calculate 2-D rotations by using the

subgroup @,.



3 Polygonal Arcs in 3-D

To make this paper self-contained, we shall review some results from our previous work. We

will summarize the approach taken in [6].

A polygonal arc is defined by a set of points (the vertices), successive pairs of vertices
are joined by line segments (the sides). We specify an orientation to each polygonal arc — so
it has an “initial” point and a “final” point. Correspondence of points on two different arcs
is defined as points which have the same arc length from the initial point of their respective
arc. A distance measure between two arcs is defined as the integral of the Euclidean distance
between corresponding points. The arcs are split into line segments so that corresponding
segments have equal length. Then the distance measure M (I, J) for arcs I and J can be

shown to be

3

=1

where there are k line segments on each arc with the i*" segment having length u;, midpoint

a; and unit direction c; for arc I, midpoint b; and unit direction d; for arc J.

A mismatch measure is found by keeping I fixed and determining the displacements J —

J' that give the minimum value for the distance measure M (1, J'). For 3-D displacements,

M(I,J') is

3

k
M(1,J') = Y{uwifa; — Rot(q)b; + t[” + 7L |c; — Rot(a)d|’} 2)
i=1

where the displacement is determined by the rotation Rot(q) and the translation t. To find
the minimum distance, (2) can be rewritten in the form M(I,J) = q"’Gq where G is a

certain real symmetric 4 x 4 positive semidefinite matrix

k 3
G =Y {wATA + %BTB} (3)

i=1



with A and B defined as two 4 x 4 matrices

B = L(c) - R(d))

and C; and Cj are the position vectors of the centroids of I and J respectively. The
smallest eigenvalue of the matrix G given by (3) is the unique minimum value of the distance
measure M(I,.J') and the eigenvector q corresponding to the smallest eigenvalue gives the

displacement J — J' by the rotation matrix Rot(q) and the translation t = C;—Rot(q)C;.

Since either end of an arc can be the initial point, we identify one as the forward direction
and the other as the reverse direction. The mismatch measure is the smallest eigenvalue of

the matrix G when calculated for both the forward and reverse directions.
Segment Matching Algorithm

The mismatch measure compares arcs of equal length. To conduct the segment matching,
an algorithm similar to the one given in Parsi et al. [10] was used. Given two polygonal
arcs I and J where |I| > |J|, we wish to match J with all possible subarcs I* of I where
|I*| = |J|. The essential idea of the matching algorithm is to slide the short arc J along the
long arc I and for every position A; along I, calculate the mismatch measure for the subarc
IF of I with the initial point A; where |I}| = |J|. After visiting all possible locations (once
and only once) we can decide on the best match by taking the minimum of the mismatch

measures at all the locations.

4 Polygonal Arcs in 2-D

By restricting a;, b;, ¢;, d;, t to the z = 0 plane and restricting q to the subgroup @, (2)
is a distance measure for 2-D arcs. To minimize the distance measure M (I, J') for 2-D arcs

three theorems are developed. Theorem 1 states that the translation is determined by the



rotation when we are interested in the extreme values of the distance measure. Theorem 2
simplifies the form of the distance measure equation. And Theorem 3 states that minimizing
the distance is an eigenvalue problem with the minimum being the smallest eigenvalue of a
2 x 2 minor of G. The proofs of Theorem 1 and Theorem 2 are straightforward from the

results in [6].

Theorem 1 For two 2-D polygonal arcs I and J of equal lengths in the same plane, given

any planar rotation Rot(q), where q is of the form (0,0, g3, q]", there is a unique planar
translation t = [ty t,,0]7 that, together with Rot(q), generates a displacement of J giving

an extreme value of the distance measure M. The translation t is given by

t= CI - Rot(q)CJ (4)

where Cy and Cy are the position vectors of the centroids of I and J respectively.

Theorem 2 For two 2-D polygonal arcs I, J of equal lengths in the same plane, the extreme

values of the distance measure M (I, J') are given by

M(I,J)=q"Gq (5)

where G s a certain real symmetric 4 X 4 positive semidefinite matriz, q s a unit quaternion
of the form [0,0, g3, q4]*, qT denotes the usual matriz transpose of q and qf' Gq is evaluated

by standard matriz multiplication.

After a change of coordinates so that the plane containing the arcs I and J is the z =0
plane in R3, the matrix G is the same matrix used in 3-D matching and is given explicitly
in (3). With this we can derive the following theorem to find the minimum distance measure

and the corresponding displacement for 2-D polygonal arcs.



Theorem 3 For two 2-D polygonal arcs I, J of equal lengths, the distance measure M (I, J')
has a unique minimum for all planar displacements J — J . Furthermore the smallest
eigenvalue of the 2 X 2 minor of G located in the lower right quadrant of G is the unique
minimum value of the distance measure M(I,J) and its corresponding eigenvector [e, e
when viewed as the quaternion q = [0, 0, e1, eo]” gives the displacement J — J' by the rotation

matriz Rot(q) and the translation (4).

Proof: Since q”q = 1, (5) may be written as M(I,J) = q"'Gq + A(1 — q'q). Taking
the partial derivatives of M with respect to q and setting to zero for the extreme values,
we get Gq = A\q. Since the polygonal arcs are planar, when the vertices and directions are
embedded as imaginary quaternions, they are of the form [z,y,0,0]. Then it can be seen

that G is of the form:

0 0 03’3 03’4

0 0 G4’3 G4’4

With the restriction of the quaternion iq to the form [0, 0, g3, g4)7 then the eigenvalue equa-
tion Gq = Aq can be reduced down to just the eigenvalues of the submatrix of G containing
rows 3 to 4 and columns 3 to 4. Since this minor is a real symmetric positive semidefinite
matrix, all of its eigenvalues will be nonnegative and the smallest eigenvalue minimizes the
distance measure. O

The minimum distance measure depends on the choice of the initial points of the two arcs
I and J. Arbitrarily name one direction for the arc J as forward and the opposite direction
for arc J as reverse. Keeping the choice of direction for I constant, calculate the minimum
distance between I and both the forward and reverse directions of J (by Theorem 3, just
the smallest eigenvalue of a 2 X 2 matrix). Let the mismatch measure between I and J be

the minimum of these two values. With this mismatch measure, the algorithm described in

6



section 3 can be used for segment matching of 2-D arcs.

5 IMPLEMENTATION

We have tested the matching algorithm on a number of synthetic images. First we demon-
strate the mismatch measure for two equal length 2-D polygonal arcs. Then we conduct the

matching of 2-D arcs.

Given two equal length 2-D polygonal arcs I and J in Figure 1(a), the mismatch measure
may be calculated as follows. Since either endpoint of J may be used as the initial vertex of
the arc, arbitrarily name one endpoint as forward and the other as reverse. Then, for each

direction, the matrix G (from Theorem 3) may be reduced to

50.67 0 0 0 5.33 0 0 0
0 0 0 0 0 4533 0 0
G’for = C'}rev =
0 0 42.67 10.67 0 0 8 16
0 0 10.67 8 0 0 16 42.67

The smallest eigenvalue of the lower right quadrant of Gy, and G, is approximately 4.98
and 1.74 respectively. Using the eigenvector corresponding to the smaller eigenvalue, the
quaternion to rotate J is [0,0,0.931, —0.364]7 and the translation is [4.51,8.92]T. The re-
sulting J' is superimposed over [ in Figure 1(b). Note, if the matching was done using the
3-D mismatch measure then the smallest eigenvalue of the full matrices Gy, and Gy, would
have been used. In that case the eigenvalue is 0 which means an exact match (rotate J
around the y axis and translate to I). Thus the arcs I and J do not match under 2-D but

do match under 3-D.
[Figure 1 about here.]

To match 2-D arcs, I and J, we embed the plane containing the arcs in R? as the z = 0

7



plane. Then the algorithm is applied using the mismatch measure from Theorem 3. For an
example, let I be the long arc and J be the short arc in Figure 2(a). The minimum distance
measure is calculated as we slide the short arc J along the longer arc I. The resulting graph
of the minimum distance measure versus starting position on I is presented in Figure 2(b).
Transforming J to J' for the lengths A,B,C,D, and E from Figure 2(b) and superimposing
over the original arc [ yields Figure 2(c). This figure verifies that the minimum value at

length D in the histogram corresponds to the best match in Figure 2(c).

[Figure 2 about here.|

6 CONCLUSIONS

We have shown that the subgroup of the unit quaternions which represent rotations around
the z-axis can be used to represent 2-D rotations. The benefits of using this subgroup include
the ease of finding close formed solutions and the ability to use the same approach for 2-
D and 3-D algorithms. We have used this subgroup in the segment matching problem of
2-D arcs. It allowed us to use basically the same theorems from the 3-D approach in 2-D
matching. The resulting solution of the mismatch measure is simply the smallest eigenvalue
of a 2 x 2 matrix. Since a curve may be approximated by a polygonal arc up to any degree

of accuracy, these results may be used to match 2-D curves.
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Figure 1: Mismatch Measure for Equal Length Arcs
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Figure 2: Matching 2-D Polygonal Arcs
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