Kernel VA-Files for Nearest Neighbor Search
In Large Image Databases

Douglas R. Heisterkamp
Computer Science Department
Oklahoma State University
Stillwater, OK 74078
Email: drh@ieee.org

Abstract— Many data partitioning index methods perform
poorly in high dimensional space. The vector approximation file
(VA-File) approach overcomes some of the difficulties of high
dimensional vector spaces, but cannot be applied when using a
kernel distance metric in the data measurement space. This paper
introduces a novel KVA-File (kernel VA-File) that extends VA-
File to kernel-based retrieval methods. A key observation is that
kernel metrics may be non-linear in the input data space but is
still linear in an induced feature space. It is this linear invariance
in the induced feature space that enables KVA-File to work with
kernel metrics. An efficient approach to approximating vectors
in an induced feature space is presented with the corresponding
upper and lower distance bounds. Thus an effective indexing
method is provided for kernel-based image retrieval methods.
Experimental results using large image data sets (approximately
100,000 images with 463 dimensions of measurement) validate
the efficacy of our method.

I. INTRODUCTION

Content-based image retrieval is an active area of research.
Kernel methods have been exploited in classification regres-
sion, and information retrieval [6], [13]. Kernel methods for
image retrieval have been presented and shown to outperform
weighted Euclidean distances [4], [8]. But they rely on a
sequential scan of data. The goal of this work is to provide an
efficient indexing method usable by kernel methods.

The curse of dimensionality [3] is a problem facing many
fields. Traditional data partitioning approaches to indexing
become inefficient as the number of dimensions increase,
eventually taking longer time than a sequential scan of the
data. A vector approximation file (VA-File) takes a signature
or filter approach to indexing data [17]. By sequentially
processing a compressed approximation of the data, VA-File is
able to filter most data vectors and need only retrieve a small
fraction of the actual data. To be able to conduct the filtering,
upper and lower bounds on the distance from the query to the
data point needs to be calculated. This calculation, however,
is invalid for kernel-based approaches. This paper presents
KVA-File that allows efficient calculation of upper and lower
distance bounds in the input data space, thus allowing the VA-
File approach to work for kernel-based methods.

Il. KERNEL DISTANCE FOR RELEVANCE FEEDBACK

The kernel trick has been applied to numerous problems
[6], [9]. The kernel allows an algorithm to work in a feature

Jing Peng
Department of Electrical Engineering
and Computer Science
Tulane University
New Orleans, LA 70118
Email: jp@eecs.tulane.edu

space. If ¢(x) is a mapping of a point x in the input
space to the feature space then the kernel calculates the dot
product in the feature space of the images of two points
from input space, k(a,b) =< ¢(a),¢gb) > . Common

kernels are Gaussian, k (a,b) = e , and polynomial,
k(a,b) = (1+ < a,b >)?. Distance in the feature space may
be calculated by means of the kernel [6], [16]. With a and b

in the input space, the squared feature space distance is

dist(a,b)” = [|¢(a)~¢(b)||* = k (a,a)~2k (a,b)+k (b,b) .
@)

Two known kernel distances in the relevance feedback
literature are Adaptive Quasiconformal Kernel (AQK) [8] and
One-Class SVM (1-SVM) [4], [14]. We briefly present each
approach.

Adaptive Quasiconformal Kerne (AQK) distance [8]
combines the kernel distance (1) with a quasiconformal map-
ping [1], % (a,b) = ¢(a)c(b)k (a,b), to create a new kernel
distance:

dist(a,b)> = k(a,a) —2k(a,b) +k(b,b)
= c(a)’k (a,a) — 2c(a)c(b)k (a,b)
+c(b)*k (b, b) 2

where ¢(a) is a positive real valued function of a in the input
space. One can select ¢(a) from relevance feedback to expand
the spatial resolution around irrelevant samples and contract
the spatial resolution around relevant samples [8]. That is,
distance to irrelevant samples from the query is increased and
distance to relevant samples are decreased.

One-Class SVYM (1-SVM) kernel distance is the distance
from a sample to the center of the smallest hypersphere that
includes most of the relevant retrievals from the previous
iterations [4], [14]. After finding the center, c = Y. vi¢(x;),
the one-class SVM kernel distance of vector z to c is

dist(z,¢)* = k (z,2) — 2 Z%’k (xi,2) + Z%’%‘k (xi,%;) -

i v 3)

The 4;’s are the Lagrangian multipliers from the solution
of the quadratic programming problem

. 1 . .
in R+ Zf subject to [|¢(x;)—cl|* < R*+&, & >0.

) KVA-File)
N ¢(x) oy ¢ (x) 900), i)
oo 1 [01 03 [029 0015 b e
2 /01501 |07 0.0020 na| O S
e 3 |02502 |032 0.0029)
"7 e 4 |07 085 1.1 0.0017 "1,
5 |08 09 |12 00 2
e 6 |09 075| 12 0.030 e
‘ 0[2 0.‘4 0[6 0[& Query 03 06 065 003 ‘ 0[2 0[4 0.‘6 0[8

(a) Feature Space generated by an
Identity Kernel. A one dimension
basis is generated by vg.

Fig. 1.

There are a humber of metric space based index methods,
such as M-Trees [5], any of which can be constructed in
the feature space to give rise to a kernel index scheme. In
[11], M-Trees were used to create a kernel index scheme.
For approaches that do not modify the kernel, such as 1-
SVM, M-Tree can be an effective kernel indexing scheme.
But if in the learning process, the kernel is modified, such
as in AQK, the index structure of an M-Tree can no longer
be used. This motivations our investigation into a kernel
vector approximation file that can be applied when relevance
feedback dynamically changes the kernel.

KERNEL INDEX

A. Vector Approximation File

The vector-approximation file (\VA-File) uses a signature file
as a filter [17]. The signature file is a compressed approxima-
tion of the original data file. Each data vector is stored in
the approximation file as the bit encoding of the hypercube
in which it lies. The hypercubes are generated by partitioning
each data dimension into the number of bins representable
by the number of bits used for that dimension. Typically, the
compressed file is 10% to 15% of the size of the original data
file. The maximum and minimum distances of a point to the
hypercube provides an upper and lower bounds on the distance
between the query location and the original data point.

When using a VA-File, a K nearest neighbor search is a
two phase processes. In phase one, a filtering of the possible
K-NN is done by a sequential scan of the approximation
file. The filtering process creates a candidate list. As each
approximated vector is processed, if its lower bound is less
than the current Kth closest upper bound then it is added
as a candidate for phase two. In phase two, the candidates
are visited in ascending order of lower bound until the lower
bound of the next candidate is greater than the actual distance
to the current Kth nearest neighbor.

B. Kernel Vector Approximation File

The approximation file is a reduced representation of the
data that allows an efficient calculation of upper and lower
distance bounds. To create an approximation, we use a reduced

(b) Data is decomposed into the basis and remain-
ing component, e.g., ¢(xs) = aso + ¢ (x6).

(c) Upper and lower distance
bounds

KVA-File approximations

set of orthonormal basis vectors in the feature space. The
feature space location of a data point is projected into the
reduced space and used as the approximation. In addition, the
magnitude of the error (the remaining component orthogonal
to basis) is also used as part of the approximation.

Both Kernel-PCA [12] and a Gram-Schmidt approach [2],
[7] have been used to find an orthonormal basis of the feature
space. The eigenvectors from Kernel-PCA that correspond to
the largest eigenvectors would yield the best approximation
of the locations in feature space, but it is not a compact
representation. For the work in this paper, we used a Gram-
Schmidt approach similar to the efficient algorithm in [2] to
find an orthonormal basis in the feature space. One of the
sparse approaches for Kernel-PCA [15] may also be useful.

A method to find an orthogonal basis and create data
approximations is presented in Figure 2. For now, we assume
a reduced set of basis vectors, v, of the feature space is
available and that a point on feature space can be decomposed
into a linear combination of basis vectors and a component,
¢ (x) that is orthogonal to the basis. With this decomposition,
we can represent points P and Q as P = ¢(x,) = e (xp) +
Yiso awr and Q = ¢(x,) = ¢ (%) + Xy Bv Where
d is the number of basis vectors. Distance between P and Q
can then be expressed as

diSt(Q,P)2 = ¢L(Xq)T¢L(Xq) +¢l(xp)T¢L(Xp)

d—1

— 26" (%) 6" (xp) + Y _(ar — Br)”.

t=0

(4)

We approximate a point in feature space by the basis coef-

ficients, a, and the magnitude of the error, 1/¢* (x)7 ¢ (x).

With the approximation of points P and O, the unknown
term in (4) is ¢~ (x,) ¢ (x,). But this is also equal to

VB (0T () /8 (x,) Th* (x,) cos O where 6 i the
angle between the two vectors. The angle is not represented
in the approximation but the extremes can be used to generate
bounds on the distance. Using the notation of G4(p,p) =
" (x,)" " (x,) and Ga(g,q) = ¢ (x,)"¢" (x,), then the
upper distance bounds, U(Q,P), and the lower distance

bounds, £(Q, P), is
UQ,P) =
d—1 1
(Ga(a,9) + Ga(p,p) + 21/ Ga(e,0)\/ Galp,p) + D _(ar — B1)?) 2
t=0

L£(Q,P) =
d—1

(Gal00) + Galp,p) — 2/ Cala 0/ Calrp) + 3 (e — B0)?)
t=0

The ranges for each «; and for Gd(p, p) can be partitioned
into bins and the bin locations represented by a bit encoding.
Thus allowing two levels of compression: the number of basis
dimensions and the number of bits per dimension.

The upper and lower bounds are illustrated in Figure 1.
The vector vq is used to create a one dimensional basis.
The data is decomposed into the basis and an orthogonal
component, e.g., ¢(xg) = 1.2v9 + ¢~ (x¢). The upper and
lower distance bounds is the extremes of the distance of a
query to the hyperdisk centered at the location specified by
the basis coefficients and with the radius of the magnitude of

the orthogonal component.

_ The distance bounds for 1-SVM and AQK can be developed

XQaKsymllar manner. The upper and lower distance bounds for
is

U(Q, P) = (c(xq)*Gala, a) + c(xp)* Gq(p, p)
d—1 1
+26(x0)c50)y G a0,)\ G alprp) + 3 (elxp)an — c(0)0)%) 2
t=0

,C(Q,P) = (C(XQ)zéd(q’q) +C(Xp)2éd(p,p)

d—1 1
—2¢(xq)c(xp)\ Ga(q,9)\/ Ga(p,p) + D (c(xp)at — c(x4)B4)%) .
t=0

For a query x4, we will have the actual data so we can
calculate the exact c(x,). But when processing the approxi-
mation file, we only have the approximations of the feature
space point P and thus need to use a bound on the value of

c(xp).

C. Orthogonalization in Feature Space

An incremental Gram-Schmidt orthogonalization algorithm
is presented in Figure 2. A basic summary of the approach is:
select a vector; convert all other vectors into their component
that is orthogonal to the selected vector; repeat by selecting a
new vector for the remaining set.

The storage requires for the Gram matrix is O (n?) where
n is the size of the data set. Even a moderate size data set
would require external storage of the Gram matrix. Instead of
storing the components of the Gram matrix, only the current
approximation of each vector is needed. This algorithm is
similar to the incremental algorithm presented in [2]. Finding
a basis for large data sets is feasible with the incremental
algorithm. New data can be approximated with a similar
algorithm.

Select first basis vector corresponding to data vector x;.
for each data vector x;, do

_ k(xpxa)
OjO T Vk(s,s)
Go(p,p) =k (p,p) — 0
end-for
t=0

while need more basis vectors do
Select x4 such that G¢(q, g) is maximum for next basis vector.
Let 8;’s and G¢(g, ¢) be the current approximation of ¢(xq).
for each data vector x;, do

k(xp,%q) —Fi_o @i

OfH—l A% Gy (a,9)
Gi+1(p,p) = Gi(p,p) — 0f 4
end-for A
Record x4, G¢(g, ¢), and 3;’s for later use.
increment ¢
end-while
Fig. 2. Incremental Orthogonalization Algorithm

IV. EXPERIMENTAL RESULTS

In the following, we use block I/O to compare nearest
neighbor search using kernel indexing methods (MTree and
KVAFile) over kernel-based relevance feedback approaches
(1-SVM and AQK) on the following two real data sets.

LIRD: The Letter image database, taken from [10], is the
Letter Image Recognition data (LIRD) data set and consist
of 20000 letter images. Each image is represented by 16
numerical features. The LIRD data used block size of 1988
bytes (31 records per block).

Image Data: The Hemera Photo-Object image data set
consists of 94800 images that are very heterogeneous and
having annotated ground truth. To represent the images, a color
histogram is created for 14 regions. Each histogram has 11
bins (os zones) and were extracted from three scales of each
image. This results in 462 features for each image. The Image
Data used a block size of 22180 bytes (12 records per block).

Two hundred random samples were selected from each data
set to used as query locations. A Gaussian kernel was used to
create the initial feature space.

The results of varying the basis dimensionality and the
bits per dimension for the initial retrieval of the 10 nearest
neighbors using KVA-File is presented in Figure 3. As can be
seen from the graphs, increasing the number of basis vectors
decrease the average number of data blocks read by creating a
better representation in feature space and thus a tighter upper
and lower distance bounds. But it also increases the size of the
approximation file. Decreasing the number of bits to represent
a coefficient of a basis vector in an approximation increases
the average number of data blocks read. But it also decreases
the size of the approximation file.

Both an M-Tree and an KVA-File was created for the Image
data set. Each retrieval returned a set of 20 images for the
next iteration of relevance feedback. Both AQK and 1-SVM
were evaluated for KVA-File. Only 1-SVM was evaluated
for M-Tree since AQK changes the distance metric between
iterations and thus invalidates the M-Tree index structure. The
results are presented in Figure 3(d). The KVAFile used 75

600 — 400~
Letter Data

— Bit approximation of a's

Letter Data
— No approximation of ’s
- No approximation of a’s

300
400

200+

200
100

Average Number Blocks Visited
Average Number Blocks Visited

T T T T T T | T T T T T T
0 5 10 15 20 25 1 2 3 4 5 6 7
Basis Dimension Bits per Basis Dimension

(@ (b)
Fig. 3.

6000 —

4000 —

2000 —

Average Number Blocks Visited

400

Image Data

— Bit approximation of as

~-- No approximation of ’s

@

8

8
|

~ g - 8- — 5 — -4

Image Data

——e——KVAFile, AQK
ok KVAFile, 1-SVM
~@l —— MTree, 1 SVM

Average Number Blocks Visited
5] 5
8 g
| |

Bits per Basis Dimension

(c)

Iteration

(d)

Block 1/0 performance. The number of basis dimensions were varied in (a) with no compression of the « values. The number of bits per basis

dimension used in the compression of the a values was varied in (b) and (c). Twenty-five basis vectors were used in (b). One hundred basis vectors were
used in (c). Seventy-five basis vectors and eight bits of approximation were used for K\VA-File in (c).

basis dimensions with eight bits per dimension. Thus the
approximation file was 4% of the original data file. Both
1-SVM and AQK have a dramatic decrease in the average
number of phase | candidates (7761 to 2039 and 7761 to
1368, respectfully) but 1-SVM increase block I/0 and AQK
decreased block 1/0 over feedback iterations.

In terms of CPU cost, M-Tree average about 18000 dis-
tance calculations per iteration. Each distance calculation may
involved multiple kernel evaluations when using 1-SVM or
AQK. The average distance calculations for KVA-File is much
lower since the approximation file is processed without the
need for kernel evaluations. After the initial iteration, KVA-
File averaged about 4800 distance calculations for 1-SVM and
about 800 distance calculations for AQK.

V. CONCLUSION

Many data partitioning index methods perform poorly in
high dimensional space. The VVA-File approach overcomes the
difficulty of high dimensional vector spaces, but can not be
applied when using a distance metric in the feature space
associated with a kernel. This paper proposes a KVVA-File as
an extension of VVA-File for kernel-based methods. An efficient
approach to approximate vectors in feature space is presented
with the corresponding upper and lower distance bounds.

This approach provides two levels of data compression. The
first is in the selection of the number of basis vectors. This
may be less than the original dimensionality of the input space.
The second level of data compression is in the number of bits
to represent the coefficients of an approximated vector. Both
components depend on data distribution and the ability of the
kernel to capture key components of that distribution. Exper-
imental results on image data sets with high dimensionality
demonstrated a computational and 1/O efficiency improvement
of nearest neighbor search using kernel distances.

ACKNOWLEDGMENT

The authors gratefully acknowledge support from the U.S.
National Science Foundation under Grant No. 0136348.

[1]

[2]

[3]
[4]

[5]

[6]

[71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

S. Amari and S. Wu, “Improving support vector machine classifiers by
modifying kernel functions,” Neural Networks, vol. 12, no. 6, pp. 783—
789, 1999.

F. R. Bach and M. I. Jordan, “Kernel independent component analysis,”
University of California, Berkeley, Tech. Rep. UCB//CSD-01-1166,
2001.

R. E. Bellman, Adaptive Control Processes.
1961.

Y. Chen, X. Zhou, and T. Huang, “One-class svm for learning in image
retrieval,” in Proceedings of IEEE ICIP, Thessaloniki, Greece, October
2001, pp. 815-818.

P. Ciaccia, M. Patella, and P. Zezula, “M-tree: an efficient access
method for similarity search in metric spaces,” in Proceedings of the
International Conference on Very Large Databases, August 1997, pp.
426-435.

N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector
Machines and other kernel-based learning methods. Cambridge, UK:
Cambridge University Press, 2000.

N. Cristianini, J. Shawe-Taylor, and H. Lodhi, “Latent semantic kernels,”
in Proceedings of ICML-01, 18th International Conference on Machine
Learning, C. Brodley and A. Danyluk, Eds. Williams College, US:
Morgan Kaufmann Publishers, San Francisco, US, 2001, pp. 66-73.

D. Heisterkamp, J. Peng, and H. Dai, “An adaptive quasiconformal
kernel metric for image retrieval,” in Proceedings of IEEE CVPR, Kauai
Marriott, Hawaii, 2001, pp. 236-243.

K. Muller, S.Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An
introduction to kernel-based learning algorithms,” |IEEE Transactions
on Neural Networks, vol. 12, no. 2, pp. 181-201, March 2001.

P. Murphy and D. Aha, “UCI repository of machine learning databases,”
www.cs.uci.edu/~mlearn/MLRepository.html.

J. Peng, B. Banerjee, and D. R. Heisterkamp, “Kernel index for rele-
vance feedback retrieval in large image databases,” in 9th International
Conference on Neural Information Processing, 2002.

B. Scholkopf, A. Smola, and K.-R. Muller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Computation, vol. 10,
pp. 1299-1319, 1998.

B. Scholkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA:
MIT Press, 2002.

D. Tax and R. Duin, “Data domain description by support vectors,” in
Proceedings of ESANN, 1999, pp. 251-256.

M. E. Tipping, “Sparse kernel principal component analysis,” in
Advances in Neural Information Processing Systems, 2000, pp. 633-639.
[Online]. Available: citeseer.nj.nec.com/article/tippingOlsparse.html

V. N. Vapnik, Satistical learning theory, ser. Adaptive and learning
systems for signal processing, communications, and control. New York:
Wiley, 1998.

R. Webber, J. Schek, and S. Blott, “A quantitative analysis and
performance study for similarity-search methods in high-dimensional
space,” in Proceedings of the International Conference on Very Large
Databases, August 1998, pp. 194-205.

Princeton Univ. Press,

