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Abstract

Probabilistic feature relevance learning (PFRL) is an ef-
fective technique for adaptively computing local feature rel-
evance for content-based image retrieval. It however be-
comes less attractive in situations where all the input vari-
ables have the same local relevance, and yet retrieval per-
formance might still be improved by simple query shifting.
We propose a retrieval method that combines feature rele-
vance learning and query shifting to try to achieve the best
of both worlds. We use a linear discriminant analysis to
compute the new query and exploit the local neighborhood
structure centered at the new query by invoking PFRL. As a
result, the modified neighborhoods at the new query tend to
contain sample images that are more relevant to the input
query. The efficacy of our method is validated using both
synthetic and real world data.

1. Introduction

Probabilistic feature relevance learning for content-
based image retrieval [8] computes flexible metrics for pro-
ducing retrieval neighborhoods that are elongated along less
relevant feature dimensions and constricted along most in-
fluential ones. The technique has shown promise in a num-
ber of image database applications. It, however, becomes
less appealing in situations where all the input variables
have the same local relevance, and yet retrieval performance
might still be improved by simple query shifting.

On the other hand, MARS [9] is a simple query shift-
ing mechanism that attempts to improve retrieval perfor-
mance by adaptively moving the input query toward rele-
vant retrievals and, at the same time, away from irrelevant
ones. Similarity computation remains fixed throughout the
retrieval process. While MARS has been shown to improve
retrieval performance in simple tasks, it is clear that in many

problems the mere shifting of the query is insufficient to
achieve desired goals, as we shall see later.

In this paper, we propose a novel, principled approach
that combines probabilistic feature relevance learning, as in
[8], and query shifting, as in [9], to try to achieve the best
of both worlds for content-based image retrieval [1, 6, 8, 9].
We use a linear discriminant analysis to compute the new
query and exploit the local neighborhood structure centered
at the new query by invoking PFRL. As a result, the modi-
fied neighborhoods at the new query tend to contain sample
images that are more relevant to the input query.

2. Feature Relevance Learning with Query
Shifting

We begin this section by briefly introducing the basic
ideas behind PFRL and query shifting. We then describe
in detail our method that combines PFRL and query shift-
ing in a principled way.

2.1. PFRL

In PFRL [8], retrieved images with relevance feed-
back are used to compute local feature relevance. Let
Rrnn = {x;,y; 1 be the set of K retrievals, where x; de-
notes the feature vector representing the jth retrieved im-
age, and y; is either 1 (relevant image) or O (irrelevant im-
age) marked by the user as the class label associated with
x;. If we let the class label y € {0, 1} at query x be treated
as a random variable from a distribution with the probabili-
ties {Pr(1|x), Pr(0|x)}, we have

f(x) =Pr(y = 1|x) = E(y[x).

In the absence of any variable assignments, the least-
squares estimate for f(x) is E[f] = [ f(x)p(x)dx, where
p(x) is the joint density. Now given only that x is known



at dimension x; = z;. The least-squares estimate becomes
E[flz; = 2] = [ f(x)p(x|z; = 2;)dx. Here p(x|z; = z;)
is the conditional density of the other input variables.

In image retrieval, f(z) = 1, where z is the query. Then
[(f(z) = 0) = (f(2) — Elf|z: = z])] = E[flz; = zi]
represents a reduction in error between the two predictions.
Thus, a measure of feature relevance at query z can be de-
fined as

ri(z) = E[f|z; = z].

The relative relevance can be used as a weighting scheme
for a weighted K-nearest neighbor search (KNN):

wi(z) = exp(T'ri(2))/ Y _ exp(Tri(2)).
=1

Here T is a parameter that can be chosen to maximize (min-
imize) the influence of r; on w;. For further details, see [8].

2.2. Query Shifting

The Standard Rocchio equation is commonly used in the
information retrieval field to determine the next query loca-
tion based on relevance feedback [10]. The Standard Roc-
chio is

z':ozz+,8ni Zx—w% Zx,

' xeR; ' xeR;

where z' is the new query location, z is the initial query
location, R, is the set of relevant retrievals, R; is the set
of irrelevant retrievals, n, is the number of relevant re-
trievals, n; is the number of irrelevant retrievals. The sec-
ond term is equivalent to S, where p, is the mean of
the relevant retrievals. The third term is equivalent to ypu;
where p; is the mean of the irrelevant retrievals. The Stan-
dard Rocchio expressed in terms of the retrieval means is
z' = az + fu, + v.pu; The values for the parameters
a, B, and 7y are determined by experimental runs over the
database. The settings of « = 1.0,8 = 0.75,7 = 0.25
were reported in [10] to perform well in many cases. A
common alternative is to ignore the influence of irrelevant
retrievals (v = 0) [3]. Another approach takes this theme
further by setting a = 0, 8 = 1, v = 0, i.e., the new query
is p,. Moving to g, has been claimed to be the optimal
new query location [4]. It is easy to see that it is not since
it ignores the effect of irrelevant retrievals !. See Figure 1,
where moving to the positive mean also moves closer to the
negative mean.

It is optimal based on their criterion of minimum distance to relevant
retrievals, but the criterion really should be a multiple criterion optimiza-
tion of minimizing distance to relevant retrievals and maximizing distance
to irrelevant retrievals.

2.3. Combining PFRL with Query Shifting

We present a hybrid system for learning feature rele-
vance that seeks to draw upon the exploitation feature of
PFRL and the exploration feature of query shifting.

For a given query image z in a g-dimensional feature
space, we explore a new query z' in the g-dimensional fea-
ture space for more relevant retrievals, if necessary, as fol-
lows. The computation of z' is aided by a feature extraction
that transforms from the g-dimensional feature space to a
one-dimensional space, which retains sufficient information
of the retrieval images.

Classical discriminant analysis (see, for example, [11])
attempts to project patterns into a space with lower dimen-
sionality than the original pattern space. The discriminant
analysis projection maximizes the inter-class scatter while
keeping the intra-class scatter constant. When the number
of pattern classes is two, like in our case, the discriminant
analysis projection can be realized by the one-dimensional
Fisher linear discriminant projection, which requires to cal-
culate the intra-class and inter-class scatter matrices.

To determine the exact location of z' without computing
the scatter matrices, we consider the projections of all K
retrieved images onto the line L passing through the two
sample means g, and pu;. Parameterize the points on L as
L(X\) = Ap,+ (1 =) p; with real \. We will let z' = L(\*)
for some suitably chosen \*.

Our objective is to find A* such that in the vicinity of
L(X\*), the frequency of retrieving relevant class-1 images
is high. This suggests to select A* that maximizes the con-
ditional expectation of an image pattern x given that the
component of x in the direction of L is L(A*). That is,

X" = argmax B[ (x) | proj, (x) = L(\")]

After computing z’, we exploit the neighborhood struc-
ture centered at the next query z' by invoking PFRL on all
previous (cumulative) retrieval images to generate the rel-
ative relevance weights used to determine the KNN in the

next iteration.

An estimate for the conditional expectation for a point
on L can be determined by projecting the KNN retrievals
onto L and using the following equation [2, §]

> yeoL(Jproj(x) — L) < )
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> projp(x) — L(N)| < 9)
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E[f(x)lproj,(x) = L(A)] =

where 1(-) is an indicator function for its predicate argu-
ment, y(x) is the label of a retrieved image x, and Ry
and R;t are the sets of cumulated retrieved images and re-
trieved relevant images respectively. The retrieved images
are cumulated for each individual query sequence. When



the user initiates a query with a new image, the accumula-
tions are reset.
The value of 2 is chosen such that

S L(Jproj (x) - L[ < 0) = C.

X ERINN

Due to the discrete nature of the estimate, a segment of
L will maximize E, (possibly multiple segments, in which
case we choose the largest segment). Any of the points on
the segment maximizing E can be chosen for the next query
location. We chose the mean of the relevant samples that
contributed to the estimate, E. With this choice, moving to
the relevant mean (i.e., A = 1) is obtained as a special case
by letting C = K. The «, (3, v parameters are determined
from A by settinga =0, 5= A, andy =\ — 1.

3. Experimental Results

In the following we compare the retrieval methods of
query shifting, PFRL, and PFRL combined with query shift-
ing on synthetic and real data. We also compare g, and
L(X*) for the query shift location. In all the experiments
in this section, the data is normalized along each feature
dimension of each entire data set.

First an example query using synthetic data is presented.
Then the average retrieval precision of the different methods
on real data is presented.

The synthetic data used is the 2D example data that was
provided with the Multivariate Data Generation Software
[5] from the ICPR 2000 Algorithm Performance Contest. A
query (represent as %) at location (-83.5, -97.2) is presented
in Figure 1 with both the shift to g, (& in figure) and the
shift to L(A*) (® in figure). Just query shifting is used in
this example. The shift to g, also moves closer to p; (©
in figure) with the resulting effect on the KNN of replacing
three relevant images with two relevant and one irrelevant.
The shift to L(A*) moves away from g; with the resulting
effect on the KNN by replacing three relevant and seven
irrelevant images with ten relevant images.

The retrieval methods of PFRL, shifting to p,, shifting to

L(A\*), PFRL+pu,, and PFRL+L(A*) was applied to each of
the following four databases. For all of the retrieval meth-
ods, each image in the database was selected as a query.
For each iteration, upto five iterations, the 20 nearest neigh-
bors were returned with relevance feedback. The average
retrieval precision for each method and each database is pre-
sented in Figure 3.
Database 1. The data (Texture Data) was obtained from
MIT Media Lab at: whitechapel.media.mit.edu/pub/VisTex.
There are a total of 640 images of 128 x 128 in the database
with 15 classes. The images in this database are represented
by 8 Gabor filters (2 scales and 4 orientations). Examples
of the textures are presented in Figure 2.
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Figure 1. Synthetic 2D data: example query

Figure 2. Example images from texture data

Database 2. This is a set (Sonar Data), also taken from [7],
of 208 data points having two classes (Mines and Rocks)
with equal number of instances in each class. The data are
represented by 60 features. For details, see [7].

Database 3. This data set (Vowel Data) has ¢ = 10 mea-
surements and 11 classes. There are a total of N = 528
samples in this database. This set is also taken from [7].
Database 4. The data set (Segmentation Data), taken from
the UCI repository [7], consists of images that were drawn
randomly from a database of 7 outdoor images. The im-
ages were hand-segmented by the creators of the database
to classify each pixel. Each image is a region. There are 7
classes, each of which has 330 instances. Thus, there are
a total of 2310 images in the database. These images are
represented by 19 real valued attributes.

The retrieval precision of PFRL combined with query
shifting consistently outperformed just query shifting and
PFRL individually. Shifting to L(A*) outperformed shift-
ing to p, both individually and when combined with PFRL,
though the magnitude of improvement is much less than the
magnitude of improvement of either combined method over
the individual methods.

The close performance of shifting to L(A*) and shift-
ing to p, can be explained by noting that often L(\*) is
at or very close to pu,. For example using the texture data,
84% of the time the maximum condition expectation is very
close to g, (within 0.01 of the mean-mean distance). Only
3% of the time is it far away (greater than 0.3 of the mean-
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Figure 3. Precision graphs

mean distance). Thus shifting to L(A*) performs the same
as shifting to p,in the common case and in the infrequent
case that p. is a bad location, it performs much better.

4. Summary

This paper presents a novel method that combines prob-
abilistic feature relevance learning and query shifting to try
to achieve the best of both worlds. This method uses a linear
discriminant analysis to compute the new query upon which
to estimate local retrieval neighborhood using PFRL. As a
result, the modified neighborhood at the new query tends
to contain data samples that are more relevant to the input
query. The experimental results using both synthetic and
real data show convincingly that feature relevance learning
coupled with query shifting outperformed either PFRL or
query shifting alone.

A potential extension to the technique described in this
paper is to consider additional derived variables (features)
for local relevance estimate and query shifting, thereby con-
tributing to the overall retrieval performance. The challenge
is to be able to have a mechanism that computes such infor-
mative derived features efficiently.
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