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Abstract

Parallax displacement is used to determine a relative 3D conic projective struc-
ture. This value is invariant between any number of views in time if the conic is not
moving with respect to the plane of the homography. It can be used to determine conic
correspondence between three simultaneous views. The corresponding conics may
then be used to determine the epipolar geometry. This method of determining conic
correspondence works with unknown and even changing epipolar geometry. The rela-
tive 3D conic projective structure may be used to segment groups of conics which have
consistent motion.

1 Introduction

Traditional computer vision has had success using structured environments such as manufacture
lines and using expensive high quality calibrated cameras. To take advantage the availability of
low cost uncalibrated camera, the existing techniques need to be adapted and new techniques cre-
ated. Projective invariants and image warping are two such techniques that remove the need for
expensive calibrated cameras. This work is focused on the geometric image feature of conics in the
plane plus parallax framework. The plane plus parallax framework is a subset of image warping.
Conics are a fundamental image feature. Many natural and man-made object have circular shapes.
In addition, many curves may be approximated with conics. Conics are always mapped to conics
under a general projective transformation. Conics have been very useful in graphics and modeling
[2]. Conics have numerous uses in vision [11, 14, 15].

Image warping has been used in a number of vision areas [4, 17, 16, 1, 8]. A reference view
is used. The other views are warped (transformed) back to this view. In the plane plus parallax
approach, the transformation is based on one plane in space. The points on this plane are mapped to
their corresponding points on the reference image. This plane in space is often called the dominant

plane as it is selected because it has the most points (i.e. a background plane such as a wall).
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Optical flow is often used to calculate this transformation [10, 9, 7, 12, 3]. The points not on
this plane in space are not mapped to their corresponding points in the reference image. The
displacement between the reference image point and the warped point is called the planar parallax

displacement (it is also called the parallax error, or just parallax).
Previous work has been concerned with points and in some cases lines [1, 18, 17, 20]. This

work is concerned with conics. A visible conic in space is projected to a conic in each view. If the
conic is not on the dominant plane, than there is a parallax displacement of the warped conic on
the reference image. This work is concerned with representing and using that displacement.

2 Plane Plus Parallax Framework

The relative 3D projective structure of points was present in [8]. Similar approach may be found
in [16]. The plane plus parallax framework is based on the planar homography that exists between
a plane in space and an image plane. Between two image planes, there exist a homography, H,
that maps the projected points of the space plane in one image onto the corresponding points in
the second image. For points not on the space plane, the homography does not map the points in
one image to their corresponding points in the second image. The error between the homography
mapped point and the corresponding point is called the planar parallax displacement.
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Figure 1: Geometry of Plane plus Parallax

The geometry of the planar parallax is presented in Figure 1 using the notation from [8]. The
planar parallax displacement µ̂ can be expressed as µ̂ . γ Tz

d /Π 0 ê 1 p̂w 2 where Tz is the z component of T̂

and γ is a measure of the 3D shape of the point P, in particular, γ . H
Z . When Tz . 0 then µ̂ . γ

d /Π T̂.
If µ̂1 and µ̂2 are the parallax displacement vectors of two points that belong to the static back-
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ground, then their relative 3D projective structure γ2
γ1

is given by

γ2

γ1
. µ̂T

2
3
∆p̂w 465

µ̂T
1
3
∆p̂w 465 (1)

where
3
∆p̂w 475 is a vector in the direction that is perpendicular to p̂w2 8 p̂w1. If the two points

belong to the static background over three frames then the parallax based rigidity constraint is the
statement that the relative 3D projective structure does not change. Based on the parallax motion,
the rigidity constraint can be used to detect inconsistencies in the 3D motion of two points without
knowledge of camera geometry, camera motion or structure parameters. Irani and Anandan (see
[8]) used the rigidity constraint to detect consistently moving 3D object using an uncalibrated
camera by clustering.

3 Planar Parallax Displacement of Conics

3.1 Point Correspondence

The point correspondence of C and Cw is determined by the epipolar lines. That is, corresponding
points will lie on the same epipolar line. The first theorem will allow us to make the point cor-
respondence without explicitly using the epipole. Corresponding points will lie on the same line
of the pencil determined by a pair of tangents common to both C and Cw. Of course, Theorem 1,
shows that the line is an epipolar line. The proofs of all Lemmas and Theorems of this section may
be found in [5].

Theorem 1 Let C be the original conic on the reference image, let Cw be the conic C / warped

back to the reference image. If the conic C / corresponds to the conic C , (C and C / are images of

the same space conic at the same time instance), then a pair of tangents, common to both C and

Cw, will intersect at the epipole.

Two conics will have four common tangents (real or imaginary). That means at most six
possible points of intersection. We want the constraint that when a line of the pencil formed by
two common tangents has a real intersection with one conic, it has a real intersection with the other
conic. Sometimes there may be two or more pairs of tangents that satisfy the constraint. In that
case we either pick the pair whose point of intersection is consistent with the epipolar flow fields
of the rest of the image data or just repeat the calculations of the 3D structure for each pair of
common tangents.

For example see Figure 2, the four common tangents are v0, v1, v2, and v3. They have six
intersections with the first three, e0, e1, and e2 labeled. Looking at the possible epipole e2, the
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Figure 2: Reference Image Geometry of Conics under Plane plus Parallax

epipolar line λ2 intersects conic cw at real points but intersects conic c at imaginary points. Thus
it is not a possible epipole and we can discard it (this corresponds to the constraint that will be
presented in Equation (2)). Similarly for the other three nonlabeled intersection points. The leaves
only e0 and e1 as possible epipoles. The geometry for e1 to be an epipole is such that the dominant
plane must be behind one of the camera’s. In most cases this is not a possibility. When a plane
not based on image data (such as using the reference image plane as the dominant plane) this case
could be valid. Thus e1 can be discarded (this corresponds to the constraints that will be presented
in equation (3)). Of the six intersections, only e0 is left and it is the epipole.

When a pair of common tangents are imaginary, but intersect at a real point, then that point is
in the interior of both conics. Then any real lines of the pencil will intersect both conics in real
points. When both common tangents are real and intersect at a real point, then the next couple of
constraints are needed. The notation used will follow from that used in Figure 2, b0, b2, r0, and r2

are the four contact points of the common tangents, v0 and v1. A ˆ over a vector means that it is
normalized to a fixed representation. For points, this is z L 1 and for lines it is a unit vector.

The first constraint enforces the restriction that an epipolar line which intersects one conic in a
real point must intersect the other conic in a real point. The second constraint is that the points b̂0

and r̂0 lie on the same side of line v̂1 and similarly, that the points b̂2 and r̂2 line on the same side
of the line v̂0.

Constraint 1: M v̂T
1 b̂0 N M v̂T

0 b̂2 NPO 0 and M v̂T
1 r̂0 N M v̂T

0 r̂2 NPO 0 (2)

Constraint 2: M v̂T
1 b̂0 N M v̂T

1 r̂0 NRQ 0 and M v̂T
0 b̂2 N M v̂T

0 r̂2 NPQ 0 (3)

A conic may be parameterized by using the Bernstein form of a conic (see, [2] or [5], for
background). Using that approach, we find c S t T ,the parametric form of C , and cw S t T , the parametric
form of Cw, and the complementary segments, c S t T , cw S s T as

c S t TULVS 1 W t T 2b̂0 X 2t S 1 W t T αê X t2b̂2 cw S s TYLZS 1 W s T 2r̂0 X 2s S 1 W s T αwê X s2r̂2 (4)

c S t TULVS 1 W t T 2b̂0 W 2t S 1 W t T αê X t2b̂2 cw S s TYLZS 1 W s T 2r̂0 W 2s S 1 W s T αwê X s2r̂2 [ (5)

4



where e . v0 \ v1 and the scale factors α and αw are

α .^] 8 3 b̂0 \ b̂2 4 A 1 1
3
b̂0 \ b̂2 43

b̂0 \ b̂1 4 A 1 1
3
b̂1 \ b̂2 4`_ (6)

As t ranges from 0 to 1, c
3
t 4 traces the segment of the conic from point b̂0 to point b̂2 that is closest

to ê and c
3
t 4 traces the segment of the conic from point b̂0 to point b̂2 that is farther from ê. Now

we can set up the correspondence between the points of C and Cw.

Theorem 2 With the parametric forms, c
3
t 4 and c

3
t 4 , of the conic C , and the parametric forms,

cw
3
s 4 and cw

3
s 4 of the conic Cw (see equations (4), and (5)), then the point cw

3
sλ 4 corresponds to

the point c
3
tλ 4 and the point cw

3
sλ 4 corresponds to the point c

3
tλ 4 with λ ranging from zero to one.

The parameter values, tλ and sλ, are the solutions to the quadratic equations L
3
λ 4 T c

3
t 4 . 0 and

L
3
λ 4 T cw

3
s 4 . 0 that lie in the range zero to one.

The correspondences of points between the conics C and Cw is defined completely by the two
common tangents and their points of contact.

3.2 Relative 3D Conic Projective Structure

Over the points of a conic, the 3D shape measure γ has a maximum value γmax and a minimum
value γmin. A point of the conic with γmax will have the maximum value of the γ-ratio of the points
of the conic with respect to any other point. A similar result holds for a point with γmin. The γ-ratio
of γmin to γmax can be recovered from the γ-ratios of the points of the conic with respect to any
point p since γmin

γp a γmax
γp

. γmin
γmax

.
We propose using γmin

γmax
as the relative 3D conic projective structure. Since the relative 3D

conic projective structure is the same with respect to any point p, the calculations are simplified
by using the points of contact of the common tangents as p. The calculation of the relative 3D
conic projective structure consists of finding the maximum and minimum γ-ratio of the points on
the conic with respect to a point.For numeric stability, the point b̂0 was used when 0 _ 5 b λ b 1
and the point b̂2 was used when 0 b λ b 0 _ 5. Though in this section an iterative method was used
to solve for the minimum and maximum, with a little more analysis a closed form solution for the
minimization and maximization problems may be determined.

Since the relative 3D conic projective structure is based on the relative 3D projective structure
of points, the parallax based rigidity constraint holds. Thus it may be used to detect inconsistent
3D motion of a conic over three or more frames without the need for camera geometry, camera
motion, or shape parameters in the same way that the point based rigidity constraint is used. In
addition, the specialization of a single point is removed. In the point case, all of the relative 3D
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projective structure is calculated with respect to a single reference point. Thus it depends on the
accuracy of the reference point and of its correspondences throughout the image sequence. The
relative 3D conic projective structure does not depend on a reference point. It is the same with
respect to any reference point and is, in particular, being calculated with respect to points that are
known to correspond – the points of contact of the common tangents.

4 Experimental Results

4.1 Results under Noise using Synthetic Data

By Theorem 1, the epipole of the reference image with respect to a second image may be deter-
mined by the intersection of a pair of tangents common to both the reference conic and the warped
conic. The stability of calculating epipoles using this method is investigated following a method
similar to [13]. Noise was added to the geometric properties of the image conics. For a noise
percent a, the lengths of the major and minor axis were perturbed by a uniform random value in
the range ] a percent of axis length. The location of the center of the ellipse was varied by the ] a

percent of the average of the axis lengths. The orientation of the axis was varied by ] a percent of
45 degrees. Noise was added to the planar homography by adding noise to the points used to cal-
culated the homography. The noise level of 1% corresponds to applying a uniform random noise
in the range of ] 1 pixel to the points in a 512 \ 512 image. The relative error for each coordinate
of the epipole, as defined by [13], is min c d x 1 x0 dmin

0 d x0 d efd x d 2hg 1 i The relative error of the epipoles was cal-
culated for five thousand space conics. The graph of relative error when noise is applied to image
conic only is presented Figure 3(a) and when noise is applied to both image conics and the planar
homography is presented in Figure 3(b).

The stability of the epipoles calculated by the conic planar parallax is comparable to stability
the epipoles calculated by the linear method but worse than the non-linear methods (see Figure 6
in [13]. The stability is better than the single plane method. The results presented by [13, Table
3] show a 0.486 relative error for as small as 0.4 pixel Gaussian image noise. From Figure 3(b), a
similar relative error occurs at 0.75% noise level.

The stability of the γmin a γmax ratio was investigated. The experiment setup is the same as
the epipolar calculation, but instead of calculating the epipole, the relative 3D conic projective
structure was calculated. The stability was tested with five hundred space conics. The graphs of
the absolute error is presented in Figures 3(c) and 3(c).
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Figure 3: Stability of epipoles and relative 3D conic projective structure

4.2 Results using Real Images

The experimental setup similar to that used in [6]. Images were taken from three different camera
orientations and four different times. Between each time, the box with the attached conics was
moved a small distance. The three different camera views are labeled A, B, and C. View A at time
1 is picked as the reference image. A subset of the images are presented in Figures 4 and 5. The
end of the large box was used as the dominant plane.

Conic 9 is the outer edge of the CD in the images. It remains stationary with respect to the
dominant background plane. The value of the relative 3D conic projective structure of conic 9
remains basically the same over the view and times, see Table 1. Conic 4 is the conic on the
right side of the box. The box is moving between different times. From Table 1, it is seen that at
time 1, the value is basically the same for the different views, but at later times the value changes
significantly. Thus with three simultaneous views, we can determine the correspondence of moving
conics and over a sequence of time segment the different types of motion.
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View A View B View C

Figure 4: Three views with detected conics at time 1

An example of the relative 3D conic projective structure calculated for conic 9 as it was
matched against each conic from view C is presented in Table 3(a). From the table, it is seen
that the relative 3D conic projective structure can discriminate between conics. The cluster of
epipoles presented in Table 3(b) is also tight.

Table 1: Relative 3D conic projective structure (γmin k γmax)
Reference View View B View C View C View C View C

Time 1 Time 1 Time 1 Time 2 Time 3 Time 4
(Fig. 5a) (Fig. 5b) (Fig. 5c) (Fig. 6a) (Fig. 6b) (Fig. 6c)
Conic 9 0.382 0.378 0.379 0.378 0.378
Conic 4 0.870 0.868 0.835 0.796 0.752

5 Summary

It is useful to exploit the geometry of conics under the plane plus parallax framework. Conic
correspondence and epipolar geometry may be determined from three views. Motion analysis may
then be conducted as in [19]. Motion segmentation may be conducted as in [21]. The relative 3D
conic projective structure is defined based on the relative 3D projective structure of points. The
relative 3D conic projective structure has an advantage over the relative 3D projective structure
of points in that it is not dependent on the correspondence of a single point. The relative 3D
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Time 2 Time 3 Time 4

Figure 5: View C at three additional times

conic projective structure is invariant to camera motion and may be used to segment multiple
moving objects as done for the point structure in [8]. The relative 3D conic projective structure
can discriminant be conics in real images and has a stable response to noise.
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