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Abstract.

This paper presents mutual invariants of families of coplanar conics. These invariants are compared
with the use of invariants of two conics and a case is presented where the proposed invariants have a
greater discriminating power than the previously used invariants. The use of invariants for two conics is
extended to any number of coplanar conics. A lambda-matrix is associated with each family of coplanar
conics. The use of lambda-matrices is extended from the single variable polynomial to multi-variable
polynomials. The Segre characteristic and other invariants of the lambda-matrix are used as invariants

of the family of conics.
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1. INTRODUCTION

Conics are widely recognized in the study of ma-
chine vision as the most fundamental image fea-
tures next to lines. Many natural and man-made
objects have circular shapes, and in addition,
many other curves can be approximated by conics.
Arbitrary planar shapes can be represented by a
set of coplanar conics [3], [14]. There has been
much work done in recognizing pairs of coplanar
conics using invariants [8], [11], [17], [19], [24] and
some current work on the invariants of three copla-
nar conics [33]. This paper extends the use of in-
variants to families of coplanar conics of any size.
The proposed invariants can discriminate between
two non-projectively related families of coplanar
conics in which the previously used invariants give
the same value.

Invariants are properties of geometric config-
urations which remain unchanged under an ap-
propriate class of transformations. In fact, it has
been asserted that invariance is the essential prop-
erty of a shape description [7]. Mutual invariants
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are properties of a set of objects that remain un-
changed under a class of transformations. Cooper
et. al. [4] used mutual invariants in recognition of
objects in aerial photographs. In a similar vein,
the mutual invariants of a family of coplanar con-
ics can be used in recognizing objects by being
shape descriptors to index a model of the object
from a database. Previous work with invariants
from conics have focused exclusively on two copla-
nar conics. Often, an object will have more than
two coplanar conics. This then leads to the ques-
tion of using mutual invariants of more than two
coplanar conics. In this paper we address that
question by extending the use of invariants to rec-
ognizing objects with any number of coplanar con-
ics.

The invariants we are interested in are the pro-
jective invariants. A projective invariant is an at-
tribute of an object that will remain the same un-
der changes in pose and camera calibrations since
perspective transformations are contained in the
set of projective transformations. For background
material on invariant theory see [28], [10], [5], and
[31]. For background on projective geometry see
[30] and [32]. For background on the application



of invariants to computer vision see [27], [8], [19],
[20], and [25].

The plan of the paper is as follows. In section 2
we present some results on lambda-matrices. First
in subsection 2.1, we review some of the known re-
sults for lambda-matrices in one variable. Then in
subsection 2.2, we extend the results to lambda-
matrices in several variables. In section 3 we as-
sociate a family of coplanar conics with a lambda-
matrix and propose using the invariants of the
lambda-matrix as invariants of the family of con-
ics. In section 4 we compare the use of these in-
variants with previously used invariants and we
present an example where the previous invariants
do not discriminate between two non-projectively
related families of conics and ours does. In sec-
tion 5 the experimental results are presented. A
method to compare values of the invariants us-
ing a probability distribution function is used to
investigate the affects of noise in subsection 5.1.
The invariants of three and four coplanar conics
are used to match objects in subsection 5.2. The
invariants are used to recognize tracked vehicles
in subsection 5.3. In section 6 we summarize our
paper and present directions of future research.
The proofs of section 2 and 3 are located in the
Appendix.

2. X-MATRICES

A matrix with polynomial entries is called a
lambda-matriz ([2], [13], [15]). The lambda-
matrix has been used in physics [9]. We will use
a lambda-matrix as a tool for calculating the in-
variants of a family of coplanar conics. In this
paper, the polynomials will be in the indetermi-
nates A1, Ag,..., A\, where n will depend on the
problem at hand, and the coefficients of the poly-
nomials will lie in the field of complex numbers.
When the polynomial entries are of a single vari-
able A we will refer to a lambda-matrix as a A-
matriz . When the polynomial entries are multi-
variable, A = [\, Az, ..., Ap], then we will refer to
a lambda-matrix as a A-matriz. When needed, we
shall make a restriction to using only 3 x 3 sym-
metric A-matrices with polynomials of degree at
most 1. This is done because we will construct
3 x 3 symmetric lambda-matrices of first degree

where the number of indeterminates is the num-
ber of conics in the family of coplanar conics.

First we review some of the known results for
single variable A-matrices over a field. Then we
extend the results to multi-variable 3 x 3 symmet-
ric A-matrices.

2.1. Unai-variable \-MATRICES

If the entries of the A-matrices are restricted to
being single variable polynomials with coeflicients
lying in a field K, then a number of standard re-
sults are available [2], Chap. XX, [13], Chapter II,
section 9, [15]. We shall use A as the indetermi-
nate in the single variable polynomials. A n x n
A-matrix A of rank k£ can be diagonalized to a
canonical form:

Ey 0 0 0000
0 B, 0 0 000
00 0000
00 0 E,000
00 0 0000
| 0 0 0 0 000]

where each E; (1 < i < k) is either equal to 1 or
a monic polynomials in the indeterminate A, and
E; divides E;4q for 1 < i < k— 1. The E’s are
called the invariant factors of A. If we take the
field K to be the complex numbers, then factoring
the E’s into powers of linear polynomials will give
the elementary divisors of A.

The determinant of A is a constant multiple of
the product of its invariant factors. If we express
the determinant of A into a monic polynomial,
then it is equal to the product of the invariant
factors. We shall denote the elementary divisors
of A by

(/\ + al)el ,()\ + 042)62 Sttt ()\ + ak)e’"

So, the linear factors (A + «;) need not be distinct
from one another. The degrees es,...,e,, may
be written as a symbol [e; ea ... ep]. The de-
grees may be organized by grouping those which
correspond to the same linear factor within paren-
theses and sorting in a non-ascending order. For
example, if the elementary divisors of a matrix A



are:
A=5),(A+3),(A+3)?

then the symbol would be [(2 1) (1)], and dropping
the parentheses around single numbers, [(2 1) 1].
This symbol is called the Segre characteristic of
A (see [29], page 227 or [32], page 188).

A A-matrix is called regular if its determinant
is a constant. Two A-matrices A and B are equiv-
alent, A ~ B, if there exist two regular A-matrices
P and Q such that B = PAQ. It is a standard re-
sult that two Ad-matrices are equivalent if and only
if they have the same rank and the same invariant
factors. Two A-matrices are equivalent if and only
if they have the same rank and same elementary
divisors. Two equivalent A-matrices will have the
same Segre characteristic, but two A-matrices with
the same Segre characteristic need not be equiva-
lent.

We may add a straightforward result when the
matrix is restricted to the size 3 x 3. The proof of
this results can be found in the Appendix. This
result will be used in the analysis of families of
two coplanar conics in section IV.

PROPOSITION 1 Two 3 X 3 A-matrices are equiv-
alent if and only if the have the same monic de-
terminant and the same Segre characteristic.

2.2. Multi-variable \-MATRICES

We shall now extend some of the results of sub-
section II.A from the single variable case to a
multi-variable case. This extension does not ap-
pear in the literature and is, we believe, new.
The polynomials will be in the indeterminates
A = [A, A2, ..., A\y]. In moving to using
multi-variable polynomials from the single vari-
able polynomials, we are moving from an Fu-
clidean Domain to an Unique Factorization Do-
main [6], chapter 8. Now we can no longer use
the standard algorithm [13], pp. 89-91 for diag-
onalizing the single variable A-matrix. Instead
we define a diagonal matrix as a standard form
which is similar to the canonical form of single
variable A-matrices. The standard form is based
on the greatest common factor of subdeterminants
of the A-matrix. The diagonal elements are ratios
of these greatest common factors as defined in Def-
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inition 1. We show that that every A-matrix will
have an unique standard form. We show that two
equivalent A-matrices will have the same standard
form. We extend the Segre characteristic to ap-
ply to our standard form. Our standard form is
weaker than the canonical form of the single vari-
able case in that that two matrices with the same
standard from are not in general equivalent.

DEFINITION 1 (STANDARD FORM) Let A be a A-
matriz. Let p; be the greatest common monic fac-
tor of all i-rowed subdeterminants of A, if not all
are zeros, and let p; = 0 if all of them are zero.
Let po = 1 then the standard form D(X) is

d 0 0 0000

0do 0 0000

00 -~ 0000
DA)=|0 0 0 d. 000 (1)

00 0 0000

|00 0 0000 ]

where 1 is the maximal integer such that p,. # 0,
and the diagonal elements, d; are

di=-L i=1,...,r 2)

Pi—1

(By an i-rowed subdeterminant we mean the

determinant of an i x ¢ submatrix of A.) The

proofs of all the results of this subsection can be
found in the Appendix.

PROPOSITION 2 If p is a monic factor of all i-
rowed subdeterminants of a A-matriz A, it will be
a factor of all i-rowed subdeterminants of every
A-matriz B which is equivalent to A.

PRrOPOSITION 3 If A and B are equivalent \-
matrices of rank v and p; is the greatest common
factor of the i-rowed subdeterminants (i < r) of
A, then p; is also the greatest common factor of
the i-rowed subdeterminants of B.

PRrOPOSITION 4 If A and B are equivalent \-

matrices then A and B will have the same stan-
dard form.



PROPOSITION 5 If A is a single variable \-matriz
then the standard form is the same as the canon-
ical form.

By taking the d; of the standard form (see Defi-
nition 1) as an extension of the invariant factors of
the canonical form, we can extend the Segre char-
acteristic to the multi-variable A-matrices. We
factor each d; into irreducible polynomials. We
place the powers of the linear factors into the Segre
characteristic as before. We may also have factors
which are not linear. We define two new symbols,
b and ¢ to represent the first powers of degree two
irreducible and degree three irreducible polynomi-
als, respectively. Since we are interested in 3 x 3
A-matrices with polynomials of degree at most 1,
we will not have any other non-linear irreducibles.
As an example, if our set of factors of the d’s is

(A1 +4A2—8X3),(A] + Atd2 + A2ds + A3)

then the extended Segre characteristic is [b 1].

PROPOSITION 6 If A and B are equivalent 3x3 A-
matrices of degree 1, then A and B will have the
same monic determinant and the same extended
Segre characteristic.

3. FAMILIES OF CONICS AND THEIR
INVARIANTS

As is well known, a conic can be represented by
the quadratic form

3 3
—xt = ey
S=x"Ax = E E Q;,jTiTj

i=1 j=1

where A = (a;;) is a real symmetric 3 x 3 ma-
trix, x is a vector of homogeneous coordinates of
dimension 2. Applying a projective transforma-
tion P to a point x defines a new point x' = Px,
where P is a non-singular 3 x 3 matrix. A pro-
jection P would change S = x!Ax to ' = x!A'x
where A’ = P*AP. Thus, two conics S; and S5
represented by A; and A, respectively, are pro-
jectively equivalent if there is a projection which
takes one to the other. In other words, there exists
a non-singular matrix P such that Ay = P'A;P.

Two families of conics, {S; : 1 < i < n},
{T; : 1 < i < n} with each conic S;, T; being

represented by the matrix A;, B; respectively, are
called projectively equivalent if there is a projec-
tion which takes each conic of the first family to
the corresponding conic of the second family. In
other words, there exists a non-singular matrix P
such that
B; =P'A;P, where 1<i<n

A A-matrix A can be associated with a family of
coplanar conics as follows:

DEFINITION 2 The A-matrix A is associated with
the family of conics, {S; : 1 <i < n} represented
by matrices {A; : 1 < i < n} if A is a linear
combination of the matrices A;.

A= i AiA; 3)
=1

The entries of A are polynomials in the indeter-
minates A1,...,A\,. Here, A is a symmetric 3 x 3
matriz since each A; is a symmetric 3 X 3 matrix.

Ezample:  Given three coplanar conics (in this
case circles), S1 = z2+y?—1, 5, = 42?2 +4y>—1,
and S3 = 922+ 9y? — 5, the matrices A; are

10 0 40 o0 90 o0
Aj=]o1 o 7_A2= 04 0 71X3: 09 0
00 -1 00 -5

0 0 -1
and the associated A-matrix is

A1 +4X3 +92g 0 0
A= 0 A1 + 42y + 923 0

0 0

—X1 —Ag — 5213

The standard form D()) of A is

1 0 0
0 A +4254+92 0
D(A) — 1 2 3
0 0 AZ 4 5x1 20 + 14x1 23 + 422
+202023 + 45Ag
and the Segre Characteristic is [(1 1) 1]. O

By the results of section I1.B, any 3x3 A-matrix
equivalent to A must have the same monic deter-
minant and Segre characteristic. The following
result will allow us to use the determinant and
the Segre characteristic of A-matrices as a test for
the equivalence of families of conics.



THEOREM 1 The A-matrices associated with dif-
ferent families of coplanar conics are equivalent if
and only if the families of conics are projectively
equivalent.

Proof: = Let A and B be equivalent matri-
ces with A and B being the A-matrices associ-
ated with two different families of coplanar con-
ics, {A; : 1 <i<n}and {B;:1<1i<n}re
spectively. Since A and B are equivalent then by
Lemma 2 (presented in the appendix) B = MAN
where M and N are regular A-matrices of de-
gree 0. That is, M and N are matrices whose
entries are only scalars. Replacing A and B by
their defining equations, and distributing M and
N through A yields:

n n
> ABi=)> AMAN
i=1 i=1
thus

and since B; and A; are symmetric matrices, the
relation B; = MA;N implies that there exists a
non-singular matrix P such that B; = P*A;P [2],
Theorem 1, section 102. Furthermore, P depends
only on M and N, not B; nor A;. Thus there
exists a non-singular matrix P such that

Therefore, the families of coplanar conics, A; and
B;, are projectively equivalent.

< Since the families of conics A; and B; are pro-
jectively equivalent, there exist a non-singular ma-
trix P such that

B, =P'A;P, (1<i<n)

Substituting into the defining equation for B
yields

B =) MP'A;P =P/ () M\A;)P =P'AP
i=1 i=1
Therefore A and B are equivalent A-matrices.
|

The main idea of our technique can now be de-
scribed as follows:
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e Using Theorem 3.1, we shall look for invariants
over equivalence classes of A-matrices as these
will, by necessity, be invariants of a family of
coplanar conics. The invariants we shall use
are based on the Segre characteristic and the
determinant of the A-matrix.

Let A be the associated A-matrix for a family
of conics. Then the determinant of A is a homo-
geneous third degree polynomial

|A| = 01,11 + O1,12A8 2 + - + O n Xl (4)

where the coefficient of each monomial
Mixd> [ X\ is @y, where Y7 di = 3.
The subscripts of ©,,,, are the subscripts of
the term, Ay, AyAw, of which it is the coefficient
with 4 < v < w. The number of ©’s, which we
will call g, is a 3-combination of a set of n ele-
ments with repetition allowed (see e.g., [26], page
274), The number of ©’s, which we will call ¢,
is a 3-combination of a set of n elements with
repetition allowed (see e.g., [26], page 274). Thus,

In (4) the ©’s are mixed polynomials in the en-
tries of A;’s (the coefficients of the conics). Each
© is homogeneous in the coefficients of each conic.
Each © is an invariant of weight 2 since |A| =
|P|?|A| for any projection matrix P which acts on
the family of conics. Following the method found
in [30], page 171, a polynomial ® in the ©’s will
be an invariant if the following conditions hold:
e (Condition 1. ® is homogeneous, of degree, say,
r, in the @’s
o Condition 2. ® is homogeneous in the coeffi-
cients of each conic. The polynomial ® is ho-
mogeneous in the coefficients of the i conic if
the sum in (7) is constant for all monomials of
®. A monomial of ® has the form:

q q
H @ﬁfjﬂ,vj,wj (where Z ki=r) (6)
j=1 7j=1

which has the following weight in the coeffi-
cients of the ¢! conic :

kj(0y; + Ou; + 6uw;) )

q
Jj=0



where

|1 textif x =1, o _
0y = { 0 otherwise for z = uj,v;,and w;(8)

The invariant ® will have weight 2r where r is
the degree in condition 1. An absolute invariant
can be built from two invariant polynomials ® and
¥ of equal weight by taking the rational function
®/¥. It is also desirable, but not required, that
for each conic, the sum in condition 2 is the same
for both & and ¥. If the sum in condition 2 is
the same for both & and ¥, then the invariant is
not affected by scalar multiples of the individual
matrices representing the conics. This is desirable
since any matrix kA; for any nonzero scalar k, will

Table 1. Independent Absolute Invariants of Families of
Conics for small number of conics.

Number of
Conics

Independent absolute invariants

2 _ ©91,1,191,2,2
2 Iy = —oy—==,

71,2

72 — ©2.2.201.1.2
2=

)
O07,2,2

3 73 — ©1,1,101,2202 230333
1= e2 o2
1,1,292,3,3
73 — ©2,2,201,1,2901,1,303,3,3
2 o2, 62
1,2,291,3,3
73 — ©1,1,191,3,302,3,302,2 2
3 — 2 )
©1,1,392,2,3
73 — ©1,1,201,1,392,2,302,3,3
4 ©1,2,207 , 3©1,3,3
73 — ©1,1,201,2,201,3,302,3 3
5 ©1,1,191,2,302,2,203,3,3°
73 — ©1,1,391,2,2901,3,302,2,3
6 ©1,1,207 , 302,33
I.? — @1,1,1@1,1,2391,3,392,2,2292,2,392,3,3
[S]

3

3

3

3

i
1,1,291,2,293,3,3

4 T4 — ©1,1,191,1,202,3,4
1 ©1,1,301,1,401,2,2°
T4 — ©222012201 24
2 7 ©2,2,3022401,12"
74 — 933.391,3301.24
3 7 ©2,3,303,3,401,1,3°
74 — ©4,4,401,4,491,2,3
47 ©2,4,4034401,1,4°
T4 — ©1,1,191,1,302.34
5 7 ©1,1,201,1,401,3,3°
T4 — 91,1,191,1,4©2,3,4
6 ©1,1,201,1,301,4,4°
74 — 933392330124
77 ©1,3,303,3402,2,3’
T4 — ©4,4,492,4,4©1,2.3
8 ©1,4,403,4,402,2 4"
T4 — ©2,2,202,2,301,3,4
9 7 ©1,3,303,3,402,33°
T4 — 022202240134
10 7 ©1,2,202,2,302 4,4’
TA — ©3,3,391,2,493,3,4
11 ™ ©1,3,302,3,303,4,4’
T4 — ©4,4,493,44©123
12 7 ©1,4,402,4,493,3,4

still represent the same ith

conic. By having the
same weight in the coefficients of the it conic for
both & and ¥ will cause the scalar & to cancel out.

The number of independent absolute invariants
of a family of conics depends on the number of
conics in the family. The number of indepen-
dent absolute invariants may be found by using
dimensional analysis as done in [11]. For two con-
ics there are two independent absolute invariants.
For three conics there are seven independent abso-
lute invariants. Each additional conic will add five
more independent absolute invariants. The abso-
lute invariants are not unique. Any set of them
can be used. Depending on the application, we
may not want to use all of the independent abso-
lute invariants, but only a subset of the indepen-
dent absolute invariants. When using a subset, we
make sure that the sum in condition 2 for a conic
is not zero for all of the invariants in the subset;
if it is zero then the invariants in that subset will
not depend on that conic.

A set of these independent absolute invariants
and the Segre characteristic will be used as the
invariant descriptors of a family of coplanar con-
ics. We will call our absolute invariants Z;' which
means the j*® absolute invariant of a family con-
taining n conics. A set of invariants for three and
four conic families are presented in Table 1. Ex-
ample invariants for five, six, and seven conic fam-
ilies are located in Table 11. It should be pointed
out that the Segre Characteristic is not a continu-
ous invariant. It partitions the families of coplanar
conics into a small number of broad classes. At the
boundaries of these classes, the Segre Character-
istic can be changed by an arbitrary small change
of the parameters defining the conics.

Table 2. Example Absolute Invariants of Families of Conics
for large number of conics.

Number of Absolute invariants
Conics

5 75 — ©1.1,195,5,3055501,2,202,2.3093,4.4
1 03,3402 3301,3501,2401,1,50225

T5 — ©1,1,291,1,303,5,594,5,5

2 ©1,2,301,1,193,4,505,5,5
6 T6 — ©1,3,592,4,602,2,205,5,591,3,394,4,6
1 ©1,2,304,5,602,3,401,5,602,2,304,5,5

7 77 — ©1.1,202,4,696,7,793,3.304.4.4

17 03,3,701,5,502,2,395,6,601,4,7




4. COMPARISON WITH PREVIOUS
INVARIANTS OF TWO COPLANAR
CONICS.

The use of invariants for two coplanar conics have
been proposed by a number of authors. In this
section we compare the use of our invariant de-
scriptors with those previously used. The com-
parison will be made against invariants presented
by Forsyth [8], Quan [24], and Maybank [17].

For two coplanar conics the invariant descrip-
tors that we propose using conics are Z2, 72, and
the Segre characteristic. The invariants Z? and
72 are the absolute invariants given in Table 1
and given again in this section in (11). Let A;
and A, be the coefficient matrices of two conics,
the A-matrix A is

A =XMA1+ A,

which can be restated as a single variable A-matrix
with a change of variables if we add the fur-
ther restriction that A; is nonsingular. We will
do so that we may use the stronger results from
section2.2.1. Namely, we can use the standard al-
gorithm [13], pp. 89-91 for diagonalizing the single
variable A-matrix, and we can use Proposition 1
to prove the completeness of our invariants. The
A-matrix A is now

A=A +)A, (9)
The determinant of A given by (9) is
|A| = @3’0 + @2,1)\ =+ @172)\2 -+ @0,3)\3 (10)

where the notation for ©’s are as explained just
after (4). The invariants Z? and Z2 are

03001

2= 280012 g DosBar g
1 (_)%71 2

The invariants @ and 3 presented in [24] are the
same independent absolute invariants Z? and 73
that we are also using. The invariants I; and I
presented in [8] are

I; = Trace [AflAg] , I =Trace [A;1A1]

with the additional constraint that the matrices
A; and A, are normalized by setting their de-
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terminants to one. These two invariants can be
expressed as a function of the ©’s without nor-
malizing the matrices A; and As:

1 1

03 s o3 s
I = % I = %
®3’0®0,3 @0,363,0

if the matrices A; and Aj are all ready normalized
then .[1 = @271 and _[2 = (“)1,2.

The invariants presented by Maybank [17] are
the t-invariants of the pair of conics. They are a
function of the roots of (10). Letting p1,u2,u3 be
the roots of (10), then the t-invariants are

_ Hipe + po i3 + pa 43
(p1 + p2 + p3)?

— H1 2 43
(1 + p2 + p3)?

t1

and they can be expressed in terms of the ©’s as

2

t, = =22 299 _ 72 4 _M
1= — L9, L2 — (_)3
1,2

All of the above invariants can be expressed in
terms of the @’s. By combining Theorem 1 and
Proposition 1, we see that using just the ©’s are
not enough to show that two pairs of coplanar con-
ics are equivalent. The additional information of
the Segre characteristic is needed to show the two
pairs of coplanar conics are equivalent. To demon-
strate this, we now present two pairs of conics in
Figure 1. For these two families of conics, just us-
ing the ©’s is not enough to distinguish between
them. The use of the Segre characteristic discrim-
inates between the two pairs.

The pair of conics in Figure 1(a) is 2% + 2y% —
1 =0and 22 + 92 —1 = 0. The pair of con-
ics in Figure 1(b) is 22 + v/5y?> — v/5 = 0 and
22 + (V5 —1)y? — 2y — 1 — /5 = 0 which is de-
tected as the pair 22 + 2.236y% — 2.236 = 0 and
22 +1.236y2 — 2y — 3.236 = 0. The invariants are
calculated and presented in Table 3.

In Table 3 the conics of Figure 1(a) and the
conics of Figure 1(b) are not projectively related.
This is obvious since the first family has double
contact (two points of intersection, both multiplic-
ity two) and the second family has a single contact
of the first order ( three points of intersection, one
of which is multiplicity two). The invariants of [8],
[24], and [17] give the same value for both families
of conics. The addition of the Segre characteristic
shows the two families are not projectively related.



(a)

Fig. 1. Pairs of coplanar conics.

Table 3. Comparison of Invariants for Conic Pairs in Figure 1.

Forsyth Maybank Quan Segre
I I t1 to 12 72 Characteristic
Figure 1(a) 3.150 3.175 0.3125 0.03125 0.3200 0.3125 [(11) 1]
Figure 1(b) 3.150 3.175 0.3125 0.03125 0.3200 0.3125 [21]

A complete listing of the relationship of the Segre
Characteristic and the intersection properties of a
pair of conics may be found in [2], page 309.

5. EXPERIMENTAL RESULTS

The results were processed on a Silicon Graphics
Indy Workstation. The software used was AVS
version 5.2 [1], Maple version V R3 [16], and
Python version 1.2 [21]. Maple is an algebraic
package and was used to calculate the invariants of
the conics found in the images. Python was used
as a scripting language to control AVS through its
remote command line interface and to pass infor-
mation to Maple. Edge detection and threshold-
ing modules from AVS were used to preprocess the
images. The ellipses in the images were detected
by using a variation of the Hough transform as
presented in [12]. The coefficients of a ellipse were
calculated by applying the Brookstein algorithm
(see e.g. [27], page 246) to the edge points corre-
sponding to the detected ellipse. We assume that

the correspondence of conics between images is
known. We do this by selecting the corresponding
ellipses by hand from all of the ellipses fitted in an
image. First we investigate the affects of noise on
the invariants. Then we apply the three and four
conic invariants to match objects. Lastly, we use
six and seven conic invariants to recognize tracked
vehicles.

5.1. Comparing values of the Invariants under
Noise

In order to compare two values of an invariant, a
distance measure is needed. Just using the value
of the invariant directly does not give a good parti-
tioning of the families of ellipses that generate the
invariants. We instead use the probability dis-
tribution to compare the values similarly to the
methods presented in [18] and [27]. We define a
distance between two values of an invariant, v
and vs, to be the probability that a value v of the
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Table 4. Noise affects on the Invariants. This Table presents the average distance of the invariants between a family of
noised ellipses and the original family of ellipses. Noise is added to the major axis, minor axis, rotation, and center point

of the original ellipses.

Amount of noised added to the Original Ellipse

Invariant 0.1% 1% 2% 3% 5% 10% 25%
If 0.0004 0.0038 0.0076 0.0113 0.0186 0.0360 0.0816
I22 0.0004 0.0037 0.0074 0.0111 0.0183 0.0356 0.0804
I 0.0005 0.0055 0.0108 0.0158 0.0251 0.0462 0.0949
I 0.0006 0.0056 0.0107 0.0155 0.0247 0.0451 0.0919
t1 0.0004 0.0037 0.0074 0.0111 0.0183 0.0356 0.0804
to 0.0006 0.0063 0.0121 0.0174 0.0267 0.0430 0.0610
If 0.0010 0.0091 0.0172 0.0246 0.0384 0.0661 0.1243
IS 0.0010 0.0093 0.0174 0.0246 0.0381 0.0655 0.1226
Ig’ 0.0010 0.0101 0.0181 0.0256 0.0393 0.0682 0.1247
I;I’ 0.0014 0.0137 0.0257 0.0364 0.0555 0.0910 0.1545
Ig 0.0010 0.0105 0.0200 0.0291 0.0460 0.0801 0.1450
Ig 0.0014 0.0141 0.0261 0.0371 0.0563 0.0925 0.1544
I? 0.0014 0.0124 0.0229 0.0323 0.0498 0.0849 0.1497
If 0.0011 0.0103 0.0200 0.0294 0.0461 0.0809 0.1514
I§ 0.0010 0.0101 0.0200 0.0295 0.0469 0.0827 0.1526
.’1'34 0.0011 0.0105 0.0206 0.0298 0.0472 0.0830 0.1505
Ifll 0.0011 0.0109 0.0208 0.0299 0.0463 0.0825 0.1486
Igl 0.0012 0.0107 0.0203 0.0292 0.0462 0.0812 0.1508
Ig 0.0010 0.0103 0.0197 0.0289 0.0454 0.0808 0.1513
I# 0.0012 0.0113 0.0213 0.0306 0.0478 0.0831 0.1515
Igl 0.0010 0.0107 0.0204 0.0294 0.0464 0.0821 0.1503
Ig 0.0011 0.0103 0.0196 0.0281 0.0441 0.0763 0.1310
Ifo 0.0012 0.0102 0.0190 0.0270 0.0424 0.0729 0.1247
Ifl 0.0011 0.0111 0.0215 0.0309 0.0485 0.0842 0.1527
Iilz 0.0010 0.0109 0.0209 0.0299 0.0465 0.0825 0.1496
I{’ 0.0016 0.0160 0.0294 0.0410 0.0626 0.1006 0.1580
I25 0.0013 0.0122 0.0234 0.0335 0.0530 0.0943 0.1692
If 0.0016 0.0161 0.0299 0.0414 0.0629 0.1036 0.1620

2'17 0.0014 0.0148 0.0280 0.0397 0.0606 0.1024 0.1641

invariant lies in the interval [v;,v2]. A cumula-
tive probability distribution function F' is created
from invariants calculated from random generated
ellipses. Taking into account the similarity of our
invariants with large absolute values, the distance
between two invariants v; and v is

distance(vy, v2) = min(|F(vy) — F(v2)|,

1= |F) - Fw))

We generated the ellipses by randomly generat-
ing the components (major axis, minor axis, cen-
ter point, and rotation) such that the ellipse will
lie on an 512 x 512 image. For each invariant,
10,000 values were calculated from randomly gen-
erated ellipses. The values were sorted and used
to build a cumulative probability distribution for
each invariant.

With the randomly generated invariants, the
distance measure for two values v; and vs is just
the minimum number of values that lie between
v1 and v, when the sort list of values is viewed as
a circular array. We will use this distance measure
when comparing the invariants calculated from
images.

The noise in an image may affect the coefli-
cients of the conics that are found in the image.
How the noise affects the coefficients of a conic
is dependent on the method used to find and fit
the conic. To isolate the effects of noise on the
invariants, we add simulated noise to ellipses and
compare the invariants of the noisy ellipse and the
original ellipse. Instead of adding noise to the co-
efficients of the conic, we added an percentage of
error to the lengths of the major and minor axis,
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Table 5. Three conic invariants of the tires of the trucks in Figure 2 and of the large inner circles of the lids in Figure 3.

Image 3 73 3 73 3 vEs I3
2(a) 0.270e-3 0.834e-4 0.238¢-3 0.424e-2 -0.153e6 0.304 0.0599
2(b) 0.283e-3 0.137e-4 0.181e-3 0.150e-2 -0.401e6 0.384 0.0811
2(c) 0.112e-3 0.607e-4 0.811e-4 0.838e-2 -0.443e6 0.322 0.108
3(a) 0.0876 0.0137 0.0166 0.0107 -28.3 0.446 18.8
3(b) 0.0327 0.726e-2 0.613e-2 0.0166 -111 0.441 16.8
3(c) 0.0621 0.931e-2 0.0114 0.0121 -49.7 0.460 21.6
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Table 6. Distance between invariants of Table 5.

2(a) 2(b) 2(c) 3(a) 3(b) 3(c)
0.0000 0.0008 0.0209 0.2888 0.3693 0.2677
0.0008 0.0000 0.0217 0.2880 0.3685 0.2669
0.0209 0.0217 0.0000 0.3097 0.3902 0.2886
0.2888 0.2880 0.3097 0.0000 0.0805 0.0211
0.3693 0.3685 0.3902 0.0805 0.0000 0.1016
0.2677 0.2669 0.2886 0.0211 0.1016 0.0000
0.0000 0.0222 0.0064 0.2035 0.1672 0.1793
0.0222 0.0000 0.0158 0.2257 0.1894 0.2015
0.0064 0.0158 0.0000 0.2099 0.1736 0.1857
0.2035 0.2257 0.2099 0.0000 0.0363 0.0242
0.1672 0.1894 0.1736 0.0363 0.0000 0.0121
0.1793 0.2015 0.1857 0.0242 0.0121 0.0000
0.0000 0.0064 0.0229 0.1987 0.1383 0.1776
0.0064 0.0000 0.0165 0.2051 0.1447 0.1840
0.0229 0.0165 0.0000 0.2216 0.1612 0.2005
0.1987 0.2051 0.2216 0.0000 0.0604 0.0211
0.1383 0.1447 0.1612 0.0604 0.0000 0.0393
0.1776 0.1840 0.2005 0.0211 0.0393 0.0000
0.0000 0.0425 0.0383 0.0552 0.0841 0.0616
0.0425 0.0000 0.0808 0.0977 0.1266 0.1041
0.0383 0.0808 0.0000 0.0169 0.0458 0.0233
0.0552 0.0977 0.0169 0.0000 0.0289 0.0064
0.0841 0.1266 0.0458 0.0289 0.0000 0.0225
0.0616 0.1041 0.0233 0.0064 0.0225 0.0000
0.0000 0.0023 0.0025 0.2797 0.1919 0.2436
0.0023 0.0000 0.0002 0.2820 0.1942 0.2459
0.0025 0.0002 0.0000 0.2822 0.1944 0.2461
0.2797 0.2820 0.2822 0.0000 0.0878 0.0361
0.1919 0.1942 0.1944 0.0878 0.0000 0.0517
0.2436 0.2459 0.2461 0.0361 0.0517 0.0000
0.0000 0.0228 0.0051 0.0359 0.0347 0.0382
0.0228 0.0000 0.0177 0.0131 0.0119 0.0154
0.0051 0.0177 0.0000 0.0308 0.0296 0.0331
0.0359 0.0131 0.0308 0.0000 0.0012 0.0023
0.0347 0.0119 0.0296 0.0012 0.0000 0.0035
0.0382 0.0154 0.0331 0.0023 0.0035 0.0000
0.0000 0.0123 0.0257 0.2539 0.2491 0.2591
0.0123 0.0000 0.0134 0.2416 0.2368 0.2468
0.0257 0.0134 0.0000 0.2282 0.2234 0.2334
0.2539 0.2416 0.2282 0.0000 0.0048 0.0052
0.2491 0.2368 0.2234 0.0048 0.0000 0.0100

0.2591 0.2468 0.2334 0.0052 0.0100 0.0000
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to the location of the center point, and to the an-
gle of rotation. This resulted in a realistic error
in the fitting of a conic. A series of ellipses were
randomly generated and the true invariants were
calculated. Noise was then added to each axis by
randomly varying the axis length in the range of
+ error percentage. The location of the center
point was randomly varied by + error percentage
of 50 pixels. The angle of rotation was randomly
varied by =+ error percentage of w/2. The invari-
ants of the noisy ellipse were calculated and the
distance measure from the original was recorded.
The process was conducted for 10, 000 ellipses (dif-
ferent from those used to generate the PDF's). The
average distance between the noisy ellipses and
the original ellipses is presented in Table 4. The
columns are the percentage of noise added to the
ellipses. The rows are the invariants from Table
1, Table 11 or from section IV (i.e., I1, I5, t1, and
t2).

The invariants behave reasonably well. Espe-
cially when considering that the fitting method
for conics will remove some of the noise in an im-
age in the same way that the error in fitting a
line is less than error of the individual points (for
large number of points and random noise). The
Table 4 will be used to decide when two families of
detected ellipses match by checking the distance
measure of the two families against the average
distance under a set amount of noise.

5.2.  Matching of Three and Four Coplanar Con-
1cs

In Figure 2 we present three images of trucks and
the conics detected from their wheels. The conics
were detected at the edge of the rim of the tires.
The tires may not be exactly coplanar especially
as the front tire may be turned a little bit, but it
is a good approximation in most cases. The three
conic invariants were calculated from the detected
conics and placed in Table 5. The discriminating
power of the invariants is demonstrated by using
Figure 3 and focusing on the subset consisting of
the three small conics. The detected conics of the
shaker lid in images 3(a) through 3(c) is displayed
in images 3(d) through 3(f), respectively. The
three conics invariants were calculated and placed

in Table 5. The distances between the invariants
of Figures 2(b), 2(c), 3(a), and 3(c) are collected
in Table 6. Thus the three conic invariants may
be used to discriminate between different objects.

The Segre characteristic is the same for both
objects as the conics in both families are disjoint,
non-concentric circles. As all of our test objects
contain families of disjoint, non-concentric circles,
their Segre characteristic is the same. Therefore
we do not present the Segre characteristic in the
tables of invariants.

The four conic invariants were calculated from
the detected conics in Figure 3 and placed in Table
7.

5.8.  Recognizing Tracked Vehicles

In this section, we attempt to recognize tracked
vehicles based on their wheel configuration. Two
images of a crane are presented in Figure 4(a) and
4(b). The conics detected at the wheels of the
cranes are presented in Figure 4(c) and 4(d) re-
spectively. The crane has six wheels and so we
used the Z¢ invariant from Table 11. The Z¢ cal-
culated from the detected conics in Figure 4 can
be found in Table 8.

Two images of an ammunition carrier are pre-
sented in Figure 5(a) and 5(b). The conics de-
tected at the wheels of the carriers are presented
in Figure 5(c) and 5(d) respectively. The invariant
I7 of the seven conics of the carriers are presented
in Table 8. To show a comparison with the cranes,
the first six wheels (starting from the front) of the
ammunition carrier were used to calculated the six
conic invariant ZP. This may also be found Table
8. The values of Z¢ for the cranes and the carriers
are close since the wheels have a similar layout,
but there is enough of a difference that they may
be used to discriminate between the two object. In
Figure 6(a), both a crane and an ammunition car-
rier is present. The conics detected at the wheels
of the two vehicles is displayed in Figure 6(b). The
values of Z8 and Z7 are also presented in Table 8.
To recognize to vehicles in Figure 6(a), the dis-
tance from the Z% of each vehicle to the Z¢ value
from the Figures 4(a), 4(b), 5(a), and 5(b) were
calculated and are presented in Table 9. This al-
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Fig. 5. Ammunition Carrier
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lows us to classify the first object as a crane and
the second object as an ammunition carrier.

6. SUMMARY

We have extended the use of invariants from recog-

nizing a pair of conics to recognizing any number

of conics. We have shown a case where the Segre
characteristic can discriminate between pairs of
conics while the previously used invariants are not
able to make the discrimination. We found that,
on average, the invariants respond reasonable well
to noise. The invariants were shown to be able
match and discriminate between real world ob-
jects.

Some of the directions for future research are:

e Find and test symmetric invariants. That is,
invariants that do not depend on the order of
the conics.

e Find an optimal set of invariants with respect
to their stability under noise.

e Extend the results from families of conics to
families of Quadrics.

e Find geometric interpretation for the invari-
ants.

e Extend to families of non-coplanar conics fol-
lowing Quan’s method in [22], [23].

e Replace the computationally expensive calcu-
lation of the Segre Characteristic with a set of
inequality checks as was done in [32] for two
conics using a Hessian, Jacobian, and a Dis-
criminant.

Appendix

In this appendix we give the proofs of certain re-
sults that were stated in section 2.

Lemma 1 Two 3 x 3 single variable \-
matrices are equivalent if and only if they have
the same monic determinant and the same Ej.
Proof = Two equivalent single variable M-
matrices will have the same invariant factors.
Thus the same E3 and monic determinant.

Proof < The degree of the determinant A is at
most 3. The degree of E3 is at most 3. The linear
factors of F3 and A are the same. We distinguish
three cases:

e If Fj3 is of degree 3 then E; and Fs, are 1,

e If FE3 is of degree 2 then E; is 1 and Ej is E%.
e If F5 is of degree 1 then F; and E, are equal
to E3
Thus in all cases, both the A-matrices will have the
same invariant factors and are thus equivalent. O
Proposition 1 Two 3 x 3 single variable
A-matrices are equivalent if and only if the have
the same monic determinant and the same Segre
characteristic.
Proof: = Two equivalent single variable \-
matrices will have the same elementary divisors.
Thus the same Segre characteristic and monic de-
terminant.
< The degree of the determinant A is at most 3.
Thus A will have at most 3 linear factors: a,3, and
~ . The possible Segre characteristic for a 3 x 3
matrix is [3], [2 1], [(2 1)], [1 1 1], [(1 1) 1], and
[(111)]. Thus the invariant factor E3 in each case
is:

Case [3]: Then a = 8 = v and thus E3 = a®.

Case [2 1]: Then a = 8 and E; = o?y.

Case [(2 1)]: Then a = 8 =+ and E3 = a?.

Case [1 1 1]): Then E3 = afy.

Case [(1 1) 1]: Then a = 3 and E3 = avy.

Case [(111)]: Then a =8 =+ and E3 = a.
Therefore both A-matrices will have the same E3,
therefore they are equivalent. m|

Proposition 2 If p is a monic factor of all
i-rowed subdeterminants of a A-matriz A, it will
be a factor of all i-rowed subdeterminants of every
A-matriz B which is equivalent to A
Proof A ~ B = A = PBQ where P and Q
are regular A-matrices. The elementary transfor-
mation of interchanging two rows or columns have
the effect on the i-rowed determinant of A of mul-
tiplying it by a nonzero constant, thus p is still a
factor. The elementary transformation of multi-
plication of each element of a row (or a column)
by the same nonzero scalar will have the effect on
the i-rowed subdeterminants of A of multiplying
it by a nonzero constant, thus p is still a factor.
The elementary transformation of adding to the
elements of some column j, the elements of some
column k, each multiplied by a polynomial ¢(\).
Any i-rowed subdeterminant which does not in-
volve the j* column will be unchanged. Any i-
rowed subdeterminant which involves both the j
and k column will remain unchanged. An i-rowed
subdeterminant which involves the j** column but



not the k' column may be written after the trans-
formation in the form a =+ ¢(\)b, where a and b are
i-rowed subdeterminants of A. Thus the proposi-
tion holds for any elementary transformation. So
it holds for any product of elementary transfor-
mations. Thus it holds for any regular A-matrices
P and Q. m|
Proposition 3 If A and B are equivalent \-
matrices of rank r, and p; is the greatest common
factor of the i-rowed subdeterminants (i < r) of
A, then p; is also the greatest common factor of
the i-rowed subdeterminant of B.
Proof By proposition 2, p; is a factor of all i-rowed
subdeterminants of B. If the i-rowed subdetermi-
nants of B has a greater common factor than p;,
it would also be a factor of all the i-rowed deter-
minants of A; which is a contradiction. |
Proposition 4  If A and B are equivalent
A-matrices then A and B will have the same stan-
dard form.
Proof Since A ~ B, then every greatest common
factor,p(i), of the i-rowed determinants of A are
the greatest common factor of the i-rowed deter-
minants of B. Thus the standard forms are the
same. |
Proposition 5 If A is a single variable -
matriz then the standard form is the same as the
canonical form.
Proof The greatest common factor, p(i), of the
canonical form is just the product:

p() =[] B
j=1
The d; of the standard form is

p(i)

= pi-n
Thus the standard form is the canonical from for
single variable A-matrices. o

Proposition 6 If A and B are equivalent
A-matrices the A and B will have the same monic
determinant and the same extended Segre charac-
teristic.
Proof A ~ B = A = PBQ with the de-
terminants of P and Q being constants. From
|A| = |P||Q||B], it follows that A and B have the
same monic determinant. Since A and B have
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the same standard form, they will have the same
extended Segre characteristic.

Lemma 2 If two A-matrices, A and B,
are equivalent and are associated with families
of coplanar conics then there exists two regular
A-matrices, M and N, of degree zero such that
B = MAN.

Proof There exists two regular A-matrices, P
and Q, such that B = PAQ. Let P = P + Py
and Q = Q + Qo where Po and Qo are degree
zero (scalar matrices) and P, Q are matrices with
each entry either zero or a polynomial of degree
greater of equal to one. Then

B = PAQ= P + PO)A(Q + Qo)
= PA(Q+ Qo) + PoAQ +PoAQg

Since A and B are associated with families of
coplanar conics, then all entries in the two ma-
trices must either be zero or of degree one. Fur-
thermore since all entries in P and Q are ei-
ther zero or of degree at least one, the product
of P or Q with A must be zero or of degree
greater than one. Since B is degree one, the terms
PA(Q+Qo)+PoAQ must reduce to zero. There-
fore B = PgAQg. Let M and N be Pg and Qg,
respectively.
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Table 7. Invariants of Four conic families in Figure 3.

Invariant Figure 3(a) Figure 3(b) Figure 3(c)
Tt -0.0785 -0.0559 -0.0813
I}l -0.366 -0.144 -0.288
I%1 -0.586 -0.347 -0.393
I% -0.908 -0.958 -0.866
7. -0.439 -0.261 -0.459
IE?1 0.184 0.0927 0.168
I? -0.0959 -0.0635 -0.0675
i -0.875 -1.02 -0.803
I% 0.0130 0.00297 0.00411
Ifo 0.750 0.243 0.602
Iﬁl 0.233 0.116 0.198
72, -0.872 -0.977 -0.748

Table 8. Invariants Z¢ and Z] for figures 4, 5, and 6(a).

Figure I16 I17
Figure 4(a) 0.297 -
Figure 4(b) 0.279 -
Figure 5(a) 0.865 0.000275
Figure 5(b) 1.10 0.000455
Figure 6(a) - Crane 0.283 -
Figure 6(a) - Ammo Carrier 2.15 0.0000827

Table 9. Distance Measure between values of invariant of
Table 8

Figure 6(a) Figure 6(a)

Crane Ammo Carrier
4(a) 0.0008 0.0228
4(b) 0.0006 0.0242
5(a) 0.0144 0.0092
5(b) 0.0170 0.0066
6(a) - Crane - 0.0236
6(a) - Ammo Carrier 0.0236 -
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