A Kernel Vector Approximation Filefor Nearest Neighbor Search using
Kernel Methods

Douglas R. Heisterkamp Jing Peng
Computer Science Department Electrical Engr. and Computer Science
Oklahoma State University Tulane University
Stillwater, OK 74078 New Orleans, LA 70118
drh@ieee.org jp@eecs.tulane.edu

1 Introduction

Traditional data partitioning approaches to indexing become inefficient as the number of dimensions in-
crease, eventually taking longer time than a sequential scan of the data. A vector approximation file (VA-
File) takes a signature or filter approach to indexing data [21, 7]. By sequentially processing a compressed
approximation of the data, VA-File is able to filter most data vectors and need only retrieve a small frac-
tion of the actual data. To be able to conduct the filtering, upper and lower bounds on the distance from
the query to the data point needs to be calculated. This calculation, however, is invalid for kernel-based
approaches. This paper introduces a novel KVA-File (kernel VA-File) that extends VVA-File to kernel-based
retrieval methods. An efficient approach to approximating vectors in an induced feature space is presented
with the corresponding upper and lower distance bounds. Thus an effective indexing method is provided for
kernel-based image retrieval methods.

The layout of the paper is as follows. A vector approximation file is presented in Section 2. Methods
using kernel distance is reviewed in 3. The feature space distance bounds and the KVAFile is developed in
Section 4. Creating the orthogonal basis and approximating data is presented in Section 5. Initial results on
real world data is presented in Section 6.

2 Vector Approximation File

The vector-approximation file (VA-File) uses a signature file as a filter [21, 22]. The signature file is a
compressed approximation of the original data file. Each data vector in the original data is stored in the
approximation file as the bit encoding of the hypercube in which it lies. For example, in Figure 1, two bits
per dimension were used to approximated the data vectors. Vector 3, [0.25,0.2], is represented by the bit
pattern 0100, meaning bin 01 of first dimension and bin 00 of second dimension. Typically, the compressed
file is 10% to 15% of the size of the original data file.

The distance of a point to an approximated vector is bounded by the maximum and minimum distances to
the hypercube that the bit encoding of the approximation represents. The maximum and minimum distances
of a point to the hypercube provides an upper and lower bounds on the distance between the query location
and the original data point. For example, in Figure 1, the distance from the query to vector 3 is within the
lower bound of I3 and the upper bound of uz. Similarly, 14 and u, are the lower and upper bounds of the
distance of vector 4 from the query.

When using a VA-File, a K nearest neighbor search is a two phase processes. In phase one, a filtering
of the possible K-NN is done by a sequential scan of the approximation file. The filtering process creates

bit approximation bit approximation

00 01 10 11 00 01 10 11
| | | | | | | |
1 1

1% i L 11
0.8 0.8 o
‘6 vectors VA-File . la ‘6
2 riE 1]01 03 0001 2 Query 10 g
£ 0.6 &) £ 0.6 “ =
z £ 2] 015 0.1 00 00 z g
g é 3] 025 0.2 0100 :: g
5 04 Fo1 £ 4107 08 | 1011 5 04 ls Lok
s 1 = 5108 09 1111 8 1, M =
09 \ 6 | 09 0.75 1010 02 .
2, - 00 2, I 00
0 T T T 0 T T T
0 0.2 0.4 0.6 0.8 1 0 02 0.4 0.6 0.8 1

original data value original data value

Figure 1: VA-File approximations

a candidate list. As each approximated vector is processed, if its lower bound is less than the current Kth
closest upper bound then it is added as a candidate for phase two. In phase two, the candidates are visited
in ascending order of lower bound until the lower bound of the next candidate is greater than the actual
distance to the current Kth nearest neighbor.

3 Kernd Distance for Relevance Feedback Retrieval

The kernel trick has been applied to numerous problems [12, 17, 5, 13, 10]. The kernel allows an algorithm
to work in a feature space. If @(x) is a mapping of a point x in the input space to the feature space

X = (X]_," . ,Xq)t - (p(X) = (([)J_(X), 7(pn(x))t

then the kernel calculates the dot product in the feature space of the images of two points from input
space, k(a,b) =< ¢@(a),@(b) > . Here q represents the dimensionality of the input space, and n the di-

. . . _lla-b|i? .
mensionality of the feature space. Common kernels are Gaussian, k(a,b) =e 2?2 , and polynomial,

k(a,b) = (1+ < a,b >)9. Distance in the feature space may be calculated by means of the kernel [20, 5].
With aand b in the input space, the squared feature space distance is

dist(a,b)? = ||@(a) —@(b)||> = k(a,a) — 2k(a,b) +k(b,b). (1)

Two known kernel distances in the relevance feedback literature are Adaptive Quasiconformal Kernel
(AQK) [9] and One-Class SVM [4, 18]. We briefly present each approach.

Adaptive Quasiconformal Kernel (AQK) distance [9] combines the kernel distance (1) with a quasicon-
formal mapping [1, 2]

k(a,b) =c(a)c(b)k(a,b). 2
to create a new kernel distance:
dist(a,b)? = k(a,a) — 2k(a,b) +k(b,b) = c(a)?k(a,a) — 2c(a)c(b)k(a,b) +c(b)?k(b,b) (3)

where c(a) is a positive real valued function of a in the input space. One can select c(a) from relevance
feedback to expand the spatial resolution around irrelevant samples and contract the spatial resolution around
relevant samples [9]. That is, distance to irrelevant samples from the query is increased and distance to
relevant samples are decreased.

One-Class SVM kernel distance is the distance from a sample to the center of the smallest hypersphere
that includes most of the relevant retrievals from the previous iterations [4, 18]. After finding the center,
C= 3, Yi@(xi), the one-class SVM kernel distance of vector zto c is

dist(z,0)2 =k(2,2) 23 yik(%,2) + 3 viyjk(%i,x) (4)
1 1)
The y;’s are the Lagrangian multipliers from the solution of the quadratic programming problem

g]inRerV—lIZEi subjectto [|@(xi) —c|? <RC+&, &>0 foralli.
|

,=.C -

4 Kernel Vector Approximation File

The approximation file is a reduced representation of the data that allows an efficient calculation of upper
and lower distance bounds. To create an approximation, we use a reduced set of orthonormal basis vectors
in the feature space. The feature space location of a data point is projected into the reduced space and used
as the approximation. In addition, the magnitude of the error (the remaining component orthogonal to basis)
is also used as part of the approximation.

Both Kernel-PCA [14, 15] and a Gram-Schmidt approach [6, 3] have been used to find an orthonormal
basis of the feature space. The eigenvectors from Kernel-PCA that correspond to the largest eigenvectors
would yield the best approximation of the locations in feature space. The problem with using Kernel-PCA is
that the representation of the eigenvectors is not compact (it can be on the order of the number of vectors in
the data set). For the work in this paper, we used a Gram-Schmidt approach similar to the efficient algorithm
in [3] to find an orthonormal basis in the feature space. One of the sparse approaches for Kernel-PCA
[19, 16] may also be useful.

A method to find an orthogonal basis and create data approximations is presented in Section 5. For now,
we assume a reduced set of basis vectors, v, of the feature space is available and that a point on feature space
can be decomposed into a linear combination of basis vectors and a component, @*(x) that is orthogonal to
the basis. With this decomposition, we can represent points ? and Q as

d-1 d-1
P=@(xp) = @" (xp) + ZGM and Q=0(Xq) = @"(Xq) + ZBM
t= t=
where k is the number of basis vectors. Distance between ? and Q can be expressed as
dist(Q,P)> = [|o(xq) — @(Xp)[°
d-1 d-1)
= |l(@"(xq) + ZOBtVt)_ (@ (xp) + Zatvt)ll
t= t=

d-1 d-1 d—1
= 0000 (xg) + 3 B0 (xp) @ 00+ 5 o -2(9 0x0) "0 (xp) +)

~~ ~~

K(xq:Xq) k(Xp:Xp) K(xqXp)
d-1
= @ (Xq) @ (Xq) + @ (Xp) @ (Xp) — 20" (Xq) @ (xp) + Z(O‘t—ﬁt)z- (5)
t=

We approximate a point in feature space by the basis coefficients, a, and the magnitude of the error,

\/ @ (X)T@"(x). With the approximation of points 2 and Q, the unknown term in (5) is @"(xq)T@" (Xp).
But this is also equal to

0 (%) @ (p) = /@ (Xq) @ (X) /@" (xp) @ (xp) cOSB

where 8 is the angle between the two vectors. The angle is not represented in the approximation but the
extremes can be used to generate bounds on the distance. Using the notation from Section 5 of Gd(p, p) =
@ (xp)T@"(xp) and Gy(q,q) = @ (xq)T@" (xq), then the upper distance bounds, 71(Q,P), and the lower
distance bounds L(Q,P), s

d-1
uQ,P) = \/Gd(q a) +Ga(p, p +2\/Gd (a,9) \/Gd (p,p) + ; o — (6)

d-1
L(Q,P) = ¢Gd(q a) +Ga(p, p) 2\/Gd (9.a) \/Gd (p,p)+ ; o — (7)

The ranges for each a; and for éd(p, p) can be partitioned into bins and the bin locations represented by
a bit encoding. Thus allowing two levels of compression: the number of basis dimensions and the number
of bits per dimension.

4.1 Query asweighted combination of points

In One-Class SVM, [4], a query location is presented as a linear combination of data points:

Q= ZVi‘P(Xi) = Z\ﬁ (‘PL(XJ +dzlﬁi.t\’t>

The same process as the previous section can be used to generate the distance equation

(o gom) oo o)

d-1
= @ (xp) @ (xp) + > ZWV]‘PL(Xi)T(PL(Xj) — 20" (xq)" ZVi‘PL(Xi) + ;(Ut - Z\/iBi,t)2
™ | = |

dist(Q,P)?

The upper and lower bounds then follow:

UQP) = +ZZv.v,Gd j)+2y/Ga(p,p ZV\/Gd“‘FZGt Zv.B.t
LQP) = +Z S viYiGali,) —2y/Ga(p.p ZV\/Gd“ Zat Zv.B.t

4.2 Adaptive quasi-conformal kernel distance
The Adaptive quasi-conformal kernel, [9], modifies the distance calculation by creating a new kernel, k
K (Xa, Xp) = C(Xa)C(Xp)K (Xa, Xp) -

where c(x) is a positive real value function of x. The distance between points P and Q using the new kernel,
is

dist(Q,P)? =

d-1 d-1 2
c(Xq) <¢L(Xq) + ; Bt‘h) —C(Xq) (‘PL(Xp) +t; 0‘t"t>

= Xq 2‘]’L (Xq))T ((Xq) +Cc(Xp) ‘PL(Xp)T‘PL(Xp)—2C(Xq)c(xp)¢L(Xq)T¢L(Xp)
+ ; 0)0t — C(Xq)Bt)?.

and the upper and lower bounds on the distance is

UQ.P) = (oK (xq %)+ 200xa)c(5)y/Gal,)/ Galp.p)
d-1

~200)0l0p) 5 0ty + o) "Calp.P Zv ‘2>

t=

£(QP) = (o0t K (a0~ 20x3)0%p)/ Ba(@.) /ol p.P
d-1

- R d-1 1
~26(iq)e) 5 0u-+elrp)"Galp.p)) 5 a?) |

uQ,P)= \/C(Xq)zéd(qvcp+C(Xp)2é‘d(p7 +2¢(xq)C \/Gd (a,9) \/Gd (p,p) + % Xq)Br)2

L(Q,P)= \/c(xq)zéd(q,q)+C(xp)2éd(p, —2¢(xq)C \/Gd (9,9) \/Gd (p,p) + ; 0)0t — C(Xg)Br)2

For a query Xq, we will have the actual data so we can calculate the exact c(xq). But when processing the
approximation file, we only have the approximations of the feature space point 2 and thus we need to create
bounds on the value of c(xp). This depends on the form of the function c.

4.3 K Nearest Neighbor Search using KVAFile

The algorithm for K-NN search of the KVAFile is presented in Figure 2. Note that the phase one filtering
requires no kernel evaluations beyond the approximation for the query vector in step 1.

Figure 2: K-NN Search of KVVAFile

Input: Query Xq, Data file D, Approximation file A where a; € A corresponding to
X € D is the result of the approximation algorithm (see Figure 5).

1. Approximate xq — b = B,Gd(q, Q)

2. initialize empty Priority Queue and the Kth smallest upper bound, KUB, to
infinity.
3. // Phase One Filtering
for each g € A do
if L(b,a) <KUBthen
push L(b,&), i onto Priority Queue
update Kth smallest upper bound, KUB
end-if
end-for
// Note: candidates are on the Priority Queue

4. initialize K-NN and Kth smallest actual distance, KAD, to infinite distance.

5. // Phase Two: Searching Data File
while Queue not empty and Queue’s front lower < KAD do
lower,i = pop front of Priority Queue
read x; from DT
calculate dist(xq,xi)
update K-NN and Kth smallest actual distance, KAD
end-while

6. return K-NN

fIn actual implementation, read block containing xj, measure distance to all records in block,
mark block as visited so will not reread block if other records are candidates in the Priority Queue

5 Creating Orthogonal Basisand Approximating Data

5.1 Gram-Schmidt Orthogonalization

A Gram-Schmidt orthogonalization algorithm is presented in Figure 3. A basic summary of the approach is
select a vector; convert all other vectors into their component that is orthogonal to the selected vector; repeat
by selecting a new vector for the remaining set.

To implement the Gram-Schmidt algorithm in features space, we can only use the dot products. Given
input vectors x;, with 0 <i < m, the Gram matrix is

G(ab) = @(Xa) @(xo) = K(Xa,Xp))- (8)

The changes in the Gram matrix that results from applying the algorithm in Figure 3 can be calculated
from the entries of the Gram matrix. The orthogonalization algorithm using just the Gram matrix is presented
in Figure 4.

Figure 3: Gram-Schmidt Orthogonalization Algorithm
1. Input a set of @, (x;)’s vectors in the feature space. Initialize t = 0.

2. Select a vector, @, (x;), that maximizes a criterion, (largest norm is common).
criterion value less than a threshold then exit.

3. Let the tth vector, v, of the basis be the unit vector in direction of the selected vector,
@ (Xi). Record i ndex (t) =i.

@ (xi) ©)
@ ()" @ (x)

Vi =

4. Convert the remaining vectors into their orthogonal components.
T
Bs (Xa) = @ (x2) — (@ () Ve) e (10)

5. Increment t. Ift less than desired size of basis, d, then GOTO step 2 else EXIT.

At any iteration t, the mapping @ (x;) takes X; to the component of @, (x;) that is orthogonal to the set
of basis vectors, vj, 0 <i <t-—1. The matrix, G, is the Gram matrix of the set of @, (x;j). The original
feature space vector, @y (X;), is equal to its representation in the new basis plus the remaining component
orthogonal to the new basis.

d—1
® (X)) =@ (x)) + 2 aw (11)
t=l
where ;
o = @ (x)) (Pt(Xu ndex(t)) _ Gt(j,i ndex(t) 12)
\/(p[(X ndext) " @ (X ncox(t) /Gt (i ndex (t),i ndex (1))
and q)L) is the component orthogonal to the basis. Again, we don’t need the explicit representation of
this vector All that we will need is the magnitude, which we can get from the final Gram matrix:

@ (xj) @ (xj) = Ga(i,]) (13)

5.2 Approximation of New Vectors

To approximate new data, the orthogonalization steps for that data point must be calculated. If x, was in
the original data set, then it’s Gram matrix entry would be updated by (14). Assuming that the data was pth
data vector, then the values that we want are G;(p,index(t)),t =0...d—1, and Gq4(p, p). By storing the G;
components of the basis vectors, we can calculate these values. Denoting the column that we are calculating
by Gt, then algorithm presented in Figure 5 decomposes Xp.

Note: étH(p, p) = ét(p, p) — % is the same as ét+1(p, p) = ét(p, p) — a?. Thus we get

the relation that we expect: k(p, p) = Gn(p, p) + 3 OF.
The storage requires for the Gram matrix is O (nz) where nis the size of the data set. Each entry is a scale
versus the vector of the original data set. Even so, a moderate size data set would require external storage

Figure 4. Orthogonalization in terms of the Gram Matrix
1. Create the initial Gram matrix, Gy, from the initial mappings @, (x;). Initialize t = 0.

2. Select a sample i that maximizes a criterion, (such as largest G (i, 1)).

3. Let the tth vector, vy, of the basis be the unit vector in direction of the selected sample,
@ (Xi), see (9). Record i ndex (t) =i. Note: we don’t calculate the vector v .

4. Update the Gram matrix. Converting the remaining vectors into their orthogonal
components using (10) results in the following update to the Gram matrix:

Giii(ab) = @y (Xa)T @1 (%)

= (@)~ (@0 v ve) (@ 00— (@)T w1)
b,i

_ Gt<a,b>_% (14)

5. Increment t. Ift less than desired size of basis, d, then GOTO step 2 else exit.

Figure 5: Approximation Algorithm

éO(p7 p) = k(xpaxp)
for t=0tod—1do

GO(tv p) = k(xt7xp)

end-for
for t=0tod—1do
Oy = G, p)

/Gt (index(t),index(t))
for s=t+1tod—1do

N d d
Gua(s p) = Guls p) - R

end-for s

C A Gy(t,p)G

Gre1(P. P) = Gr(P. P) ~ et incoac)

end-for

of the Gram matrix. Instead of storing the components of the Gram matrix, only the current approximation
of each vector is needed. The orthogonalization can be done by making k passes through the data file as
oppose to k passes though a Gram matrix file. The algorithm is presented in Figure 6. This algorithm is
equivalent to the incremental algorithm presented in [3]. Finding a basis for large data sets is feasible with
the incremental algorithm.

6 Experimental Results

We performed experiments to measure the block 10 of nearest neighbor search using kernel distance on the
following two real data set.

LIRD: The Letter image database, taken from [11], is the L etter Image Recognition data (LIRD) data

Figure 6: Incremental Orthogonalization Algorithm
Select first basis vector corresponding to data vector Xs.
for each data vector x, do

On = K(Xp,Xs)

0T ks

Go(p, p) =k(p,p) — a3
end-for

t=0
while need more basis vectors do
Select Xq such that Gy (q,) is maximum for next basis vector.
Let 3i’s and Gt(q, q) be the current approximation of @(Xa).
for each data vector x, do
eyl = k(xpvxqz—z}:oaiﬁi
R VGi(aa)
Gt+1(p7 p) = Gt(p7 p) - at2+1
end-for
Record Xg, ét(q, q), and B3;’s for later use in approximating new vectors.
increment t

end-while

set. This data set consists of a large number of black-and-white rectangular pixel arrays as one of the 26
upper-case letters in the English alphabet. The characters are based on 20 Roman alphabet fonts. They
represent five different stroke styles and six different letter styles. Each letter is randomly distorted through
a quadratic transformation to produce a set of 20,000 unique letter images that are then converted into 16
primitive numerical features. Basically, these numerical features are statistical moments and edge counts.

Image Data: The Hemera Photo-Object image data set consists of 94800 images that are very hetero-
geneous and having annotated ground truth. To represent the images, a color histogram is created for each
region. The histogram has 11 bins (or zones). They are: 0:Red, 1:Orange, 2:Yellow, 3:Skin Color, 4:Green,
5:Cyan, 6:Blue, 7:Purple, 8:Black, 9:Gray, 10:White. The thresholding of the color zones is done in the
HVC space. The threshold locations were taken from [8]. The regions were created by a simple partitioning
of the image [8]. A total of 14 regions of an image were used. The regions are centered in their respective
partitioning scheme. They may overlap with adjacent regions if the image is small. Three scales of an image
were also used. The scales used are: 1:1, 2:1, 4:1 (full size, one half size, one fourth size). This results in
462 features for each image.

Two hundred random samples were selected from each data set to used as query locations. The LIRD
data was placed in a file with 31 records per block (block size of 1988 bytes). The Image Data was placed
in a file with 12 records per block (block size of 22180 bytes). The search for the 10 nearest neighbors
was performed for each of the query vectors. A Gaussian kernel was used in calculating the feature space
distance.

The result of varying the number of basis vectors used in creating the K\VVAFile of LIRD date is presented
in Figure 7(a) and Figure 7(b). The results of using a bit approximation and varying the number of bits of the
KVAFile for a fixed number of basis vectors is presented in Figure 7(c) and Figure 7(c) for LIRD data and in
Figure 8(a) and Figure 8(b) for Image data. As can be seen from the graphs, increasing the number of basis
vectors decrease the average number of data blocks read by creating a better representation in feature space
and thus a tighter upper and lower distance bounds. But it also increases the size of the approximation file.
Decreasing the number of bits to represent a coefficient of a basis vector in an approximation increases the

average number of data blocks read. But it also decreases the size of the approximation file. For examples,
using seven bits per a (basis coefficient) and one hundred basis vector for the Image data results in an
approximation file 4.8% the size of the original data file and the ten nearest neighbor search processed, on
average, 2.2% of the original data file. Using four bits per a and twenty-five basis vector for the LIRD data
set results in an approximation file 20.4% the size of the original data file and the ten nearest neighbor search
processed, on average, 6.4% of the original data file.

In addition to the saving in file I/O, the KVAFile using less computation than sequential search. Ker-
nel evaluations are needed only for the actual data visited and the query location. The processing of the
approximation file does not require kernel evaluations (beyond the single evaluation of the query).

7 Summary

This paper proposes a KVA-File as an extension of VA-File for kernel-based methods. An efficient approach
to approximate vectors in feature space is presented with the corresponding upper and lower distance bounds.
Thus an efficient indexing method is provided for kernel based image retrieval methods.

This approach provides two levels of data compression. The first is in the selection of the number of
basis vectors. The second level of data compression is in the number of bits to represent the coefficients
of an approximated vector. Both components depend on data distribution and the ability of the kernel to
capture key components of that distribution. Experimental results on image data sets with high dimension-
ality demonstrated a computational and 1/O efficiency improvement of nearest neighbor search using kernel
distances.

References

[1] S. Amari and S. Wu. Improving support vector machine classifiers by modifying kernel functions. Neural Networks,
12(6):783-789, 1999.

[2] G.D. Anderson, M. K. Vananamurthy, and M. K. Vuorinen. Conformal Invariants, Inequalities, and Quasiconformal Maps.
Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, Inc., New York, 1997.

[3] F. R.Bach and M. I. Jordan. Kernel independent component analysis. Technical Report UCB//CSD-01-1166, University of
California, Berkeley, 2001.

[4] Y. Chen, X. Zhou, and T. Huang. One-class svm for learning in image retrieval. In Proceedings of IEEE International
Conference on Image Processing, Thessaloniki, Greece, pages 815-818, October 2001.

[5] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and other kernel-based learning methods.
Cambridge University Press, Cambridge, UK, 2000.

[6] N. Cristianini, J. Shawe-Taylor, and H. Lodhi. Latent semantic kernels. In C. Brodley and A. Danyluk, editors, Proceedings of
ICML-01, 18th International Conference on Machine Learning, pages 66—73, Williams College, US, 2001. Morgan Kaufmann
Publishers, San Francisco, US.

[7] H. Ferhatosmanoglu, E. Tuncel, D. Agrawal, and A. Abbadi. Vector approximation based indexing for non-uniform high
dimensional data sets. In Proceedings of the ACM International Conference on Information and Knowledge Management,
pages 202-209, November 2000.

[8] Y. Gong. Intelligent Image Databases: Toward Advanced Image Retrieval. Kluwer, New York, 1998.

[9] D. Heisterkamp, J. Peng, and H. Dai. An adaptive quasiconformal kernel metric for image retrieval. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, Kauai Marriott, Hawaii, pages 236-243, 2001.

[10] K. Muller, S.Mika, G. Ratsch, K. Tsuda, and B. Scholkopf. An introduction to kernel-based learning algorithms. IEEE
Transactions on Neural Networks, 12(2):181-201, March 2001.

[11] P. Murphy and D. Aha. UCI repository of machine learning databases. www.cs.uci.edu/~mlearn/MLRepository.html.

[12] B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors. Advances in kernel methods : support vector learning. MIT Press,
Cambridge, MA, 1999.

10

0.6 1
600 —
Letter Data Letter Data
) — No approximation of a’s - No approximation of a’s
> ‘a 0.4 —
% 400 — 3
2 i)
m g
= S
& g
8
Z 200 = 0.2
) o
g ~
<
0— 04
I I I I I I I I I I I I
0 5 10 15 20 25 0 5 10 15 20 25
Basis Dimension Basis Dimension
(@) (b)
06—
400 —
Letter Data Letter Data
= —— Bit approximation of a’s —— Bit approximation of a’s
B 3004 ---- No approximation of a’s E ---- No approximation of a’s
i 7 0.4
= >
E E
A g
5 2004 mn
< ~
g i
= o
& £
= 100 — =
3 ~
-
<
0 \ \ \] \] 0 | \ \ T \ \]
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Bits per Basis Dimension Bits per Basis Dimension
(c) (d)

Figure 7: LIRD Data: Ten nearest neighbor search in feature space. The minimum number of blocks to
retrieve the ten is Nopt. The number of basis dimensions were varied in (a) and (b) with no compression of
the a values. The number of bits per basis dimension used in the compression of the a values was varied in
(c) and (d). Twenty-five basis vectors are used in (c) and (d). Original input data dimension is 16.

[13]

[14]

[15]

[16]

[17]

(18]
[19]

B. Scholkopf and etal. Input space versus feature space in kernel-based methods. IEEE Transactions on Neural Networks,
10(5):1000 —1017, September 1999.

B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computa-
tion, 10:1299-1319, 1998.

B. Scholkopf, A. Smola, and K.-R. Muller. Kernel principal component analysis. In Advances in Kernel Methods - Support
Vector Learning, pages 327-352, Cambridge, MA, 1999. MIT Press.

A. Smola, O. Mangasarian, and B. Scholkopf. Sparse kernel feature analysis. Technical Report Technical Report 99-03, Data
Mining Institute, University of Wisconsin, Madison, 1999.

A. J. Smola, P. L. Bartlett, B. Scholkopf, and D. Schuurmans, editors. Advances in Large Margin Classifiers. MIT Press,
Cambridge, MA, 2000.

D. Tax and R. Duin. Data domain description by support vectors. In Proceedings of ESANN, pages 251-256, 1999.

M. E. Tipping. Sparse kernel principal component analysis. In Advances in Neural Information Processing Systems, pages
633-639, 2000.

11

Image Data Image Data
6000 — : . R —— Bit approximation of a’s

—g —— Bit approximation of a’s X X o
£ No approximation of o’ o ---- No approximation of a’s
S = 014
% =
S 4000 — i
M 2
2 2
£ 5
. Z 0.05—
o 2000 — .2
0 =}
< 3
g ~
>
<

0— 0

[I I I I [I I I I I I [I
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Bits per Basis Dimension Bits per Basis Dimension
(c) (d)

Figure 8: Image Data: Ten nearest neighbor search in feature space. The minimum number of blocks to
retrieve the ten is Nopt. The number of bits per basis dimension used in the compression of the a values was
varied in (a) and (b). One hundred basis vectors are used in (a) and (b). Original input data dimension is
462.

[20] V. N. Vapnik. Statistical learning theory. Adaptive and learning systems for signal processing, communications, and control.
Wiley, New York, 1998.

[21] R. Webber, J. Schek, and S. Blott. A quantitative analysis and performance study for similarity-search methods in high-
dimensional space. In Proceedings of the International Conference on Very Large Databases, pages 194-205, August 1998.

[22] R. Weber and S. Blott. An approximation-based data structure for similarity search. Technical Report 24, ESPRIT project
HERMES (no. 9141), October 1997. Available at http://www-dbs.ethz.ch/~weber/paper/HTR24.ps.

12

