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Abstract—This paper introduces an extension to consensus
clustering that allows a feedback of the results of the consensus
to the original clustering processes. The original clustering
processes may use this information to update their partitioning
of the data. An exponential weighting approach, called lambda
consensus, is presented as a method to merged the consensus
information into graph based and vector space based clustering
algorithms. Successful consensus clustering is highly dependent
on the quality and diversity of the partitions in the ensemble.
The feedback signal allows the clustering processes to adapt
their algorithms to attempt to improve quality and diversity
of the set of partitions in the ensemble. Communication
requirements are on the same order as consensus clustering
as only the consensus labels are returned to the clustering
processes. The method is evaluated on real world data sets.
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I. INTRODUCTION

Clustering [1] is an unsupervised learning problem and a
fundamental tool of data analysis that creates a partitioning
of a data set. Consensus clustering is an ensemble approach
that uses the labellings from a set of partitions to create
a partitioning without accessing the original data set. Con-
sensus clustering [2] is useful in distributed computing as
only the labels need to be communicated from an individual
process. It is also useful for privacy preservation as access
to the original data is not needed. Even in non-distributed
situations, consensus clustering is often used to improve
quality and robustness of a clustering. The success of
consensus clustering in finding a good partitioning is highly
dependent on the quality and diversity of the clusterings in
the ensemble [3], [4].

With the goals of improving quality and managing diver-
sity, this paper proposes extending the consensus clustering
framework with a feedback loop of the results of the con-
sensus to the individual clustering processes. The individual
clusterings processes can then utilize the consensus knowl-
edge to create a new partitioning of the data. If only the
consensus labelling is returned then the extension maintains
the low communication and privacy preservation benefits
consensus clustering. Since many clustering algorithms stop
in a local minimum of their objective function, the extra
information from the consensus may allow them to transition
to a better local minimum and hence improve the quality

of the partitions in the ensemble. An exponential weighting
approach, called λ-consensus clustering, is proposed as a
method of merging the consensus results into the similarity
or distance function of an individual clustering algorithm.
An advantage of modifying the distance or similarity mea-
sure is that the individual clustering algorithms can be used
with little or no modifications. The parameter λ controls
the weighting between the original measure and consensus
measure with the contribution of the original data decaying
exponentially by λt for feedback iteration t. An alternative
usage of consensus feedback would be to use the difference
of the local partitioning and the consensus partitioning as a
search direction for incremental updates to the local parti-
tioning. This approach requires a customization of individual
clustering algorithms and is not explored in this paper.

Consensus clustering is briefly reviewed in section II. The
λ-consensus clustering approach is presented in section III,
followed by preliminary experimental results in section IV
and the summary in section V.

II. CONSENSUS CLUSTERING

Denote a set of n data objects {x0 ,x1 , . . . ,xn−1 } as
X . A partition π of X is a set of k subsets Ci of X such
that ∪k−1i=0Ci = X and Ci ∩ Cj = ∅ for 0 ≤ i, j < k
and i 6= j. Let Π = {π0 ,π1 , . . . ,πr−1 } denote a set of r
different partitions of X . The consensus clustering problem
is to create a partition πcc using only the structures of the
partitions in set Π and not the original data X .

Similarity based clustering algorithms can be used for
clustering Π by creating a consensus matrix M [5], (also
known as an ensemble co-association matrix [6]), where
Mi,j is the number of times xi was placed in the same
cluster as xj with possible weighting of the partitions and
normalization of M . The entries of M are used as the sim-
ilarity measurements for a consensus clustering algorithm.

Vector space based clustering algorithms may be used
for clustering Π by following the approach in [4] if an
appropriate utility function U can be created. The consensus
clustering problem is then expressed as a maximization
problem

πcc = argmax
π

r−1∑
0

wiU(π, πi)



where wi is a weight for partition πi . A binary data set
X b was used in [4] to prove the equivalence of k-means
clustering over X b and consensus clustering when using
appropriate distance functions and their corresponding utility
functions. The binary data set X b is an unary encoding of
the hypergraph from [2] where the unary encoding is the
one typically used for encoding categorical data for input
to an artificial neural networks and not the standard unary
representation. That is, the unary encoding of a value 2 out
of the range 0-3 is represented by [0, 0, 1, 0] and not 110. A
row i of X b corresponds to the labelling of xi in Π with
column ‘jk’ equals to 1 if partition πj has xi in subset
Ck else it is zero. Note that different partitions may have
different number of labels, so ‘jk’ means the kth label of the
jth partition. For example, if xi has labels 0, 2, and 1 in
three partitions with 4, 3, and 2 being the number of possible
labels in each partition respectively, then the row i of X b
would be [1, 0, 0, 0︸ ︷︷ ︸

π0

, 0, 0, 1︸ ︷︷ ︸
π1

, 0, 1︸︷︷︸
π2

]. A consensus clustering πcc

can be found by applying k-means clustering to the rows of
X b.

III. λ CONSENSUS CLUSTERING

In consensus clustering, no access to the original data
X is required and no feedback to the ith clusterer (the
process that creates πi ) is provided. This paper proposes to
extended consensus clustering by adding a feedback signal
to the clustering algorithms. The entire consensus matrix
M or binary data set X b could be returned, but that would
be a significance increase in communication requirements
over consensus clustering. What is proposed is the feedback
of only the consensus labelling πcc . The communication
requirement is on the same order as consensus clustering
with each iteration requiring twice the communication of
consensus clustering (the labels to and from each clusterer).
If communication is not a bottleneck, then M or X b could
be sent back, but experiments show that πcc is an effective
approximation or summary of the information in M and
X b.

Since many clustering algorithms stop in a local minimum
of their objective function, the extra information from the
consensus may allow them to transition to a better local
minimum and hence improve the quality of the partitions
in the ensemble. An exponential weighting approach, called
λ-consensus clustering, is proposed as a method of merging
πcc into the similarity or distance function of an individual
clustering algorithm. An advantage of modifying the dis-
tance or similarity measure is that the individual clustering
algorithms can be used with little or no modifications. The
parameter λ controls the weighting between the original
measure and consensus measure with the contribution of
the original data decaying exponentially by λt for feedback
iteration t.

For similarity based clusterings with the rth clusterer’s
similarity matrix at iteration t denoted as Sr,t and receiving
the feedback of the consensus labelling πcc,t , the new
similarity matrix for the next iteration t+ 1 is

Sr,t+1 = λSr,t + (1− λ)Mπcc,t

where Mπcc,t
is a co-association matrix created from πcc,t

(element Mπcc,t (i, j) = 1 if xi and xj are in the same
cluster in πcc,t else 0 with normalization depending on
the clusterer’s algorithm). The initial similarity matrix Sr,0
is the rth clusterer’s original similarity matrix of its view
of the data. Note that Sr,t+1 may not be positive semi-
definite. If the clusterer, such as kernel k-means [7], [8],
requires a positive semi-definite matrix then Sr,t+1 can be
shifted by adding positive values along the diagonal. Since
kernel k-means often converges when applied to indefinite
matrices and often to a better partitioning than the clustering
on shifted positive definite matrix, shifting is only applied
with kernel k-means if it fails to converge using Sr,t+1 .

For distance based vector space algorithms, such as k-
means, the consensus clustering πcc,t needs to update the
distances in a manner that the rth clusterer can used. One
proper way of doing this would be to define a distance
distπcc,t (xi ,xj ) as zero or one depending on if xi and xj
are in the same cluster or not. Then create a distance matrix
Dr,t+1 (i, j) = λDr,t+(1−λ) distπcc,t

(xi ,xj ) whereDr,0

is a matrix of the pairwise Euclidean distances of the rth
clusterer’s view of X . A new Euclidean space can be created
from Dr,t+1 using Torgerson approach from multidimen-
sional scaling [9], [10] which requires an expensive SVD
computation. A computationally cheaper alternative is to
extend the data vector with virtual dimensions corresponding
to the unary encoding of xi’s label in πcc . For example, if
there are four class labels in πcc and xi’s label is 1 then
[0, 1, 0, 0] is appended to the vector. Let zr,i,t be the rth
clusterer’s view of data xi at iteration t and let bi,πcc,t be
the unary encoding of xi’s label from πcc,t then

zr,i,t+1 =
[
λzr,i,t , (1− λ)bi,πcc,t

]
.

This shrinks the magnitude of the current vector and appends
the extra dimensions for the label. The vector zr,i,t grows
in dimensions with each iteration t. Typically, only a few
iterations are conducted so the growth may not cause any
problems. In case where it may cause a problem, zr,i,t+1

may be approximated by

zr,i,t+1 ≈
[
λtzr,0,i , (1− λt)bi,πcc,t

]
which ignores the contributions of the previous consensus
clusterings by just using the terms involving the original
view of the data and that latest consensus clustering. In the
experiment section, this is called a truncated update.



IV. EXPERIMENTAL RESULTS

In this section we present preliminary experiments to
show the efficacy of λ-consensus clustering. We used three
real world data sets that are typically used for classification
so the class labels can be used to evaluated the quality of
the results. The real world datasets include iris and vote
from [11] and 14cancer from [12]. For a distance based
vector space algorithn, we used the k-means algorithm. For
graph or similarity based algorithms, we used pinch ratio
clustering (PRC) [13]. Each clusterer used a different ran-
dom projection of the data to a three dimensional subspace.
When comparing clusterings, the adjusted rand index (ARI)
[14] is used. For evaluating quality, the ARI is calculated
between a clustering and the known class labels. The number
of clusters k was given to each clusters instead of trying to
estimate k, such as in [15].

The first experiment investigates the truncation approxi-
mation of zr,i,t+1 for k-means. The average results of ten
runs with 100 k-means clusterers is presented in Figure 1
with λ=0.9 for the iris, vote, and 14cancer datasets. As can
be seen from the boxplots, there is an improvement from
iteration 0 and iteration 1. Standard consensus clustering
would provide the results from iteration 0. The final λ-
consensus labelling, the red dot at iteration 9, is very similar
for the truncated and not truncated cases. In two of the
datasets, not truncating zr,i,t+1 causes the distribution of
the 100 clusterers to converge faster.

The second experiment investigates the Mπcc ,t approxi-
mation of the consensus matrix Mt . The average results of
ten runs with 100 PRC clusterers [13] is presented in Figure2
for λ=0.9 for the iris, vote, and 14cancer datasets. The
clusterers used a Gaussian similarity function s(xi ,xj ) =
exp(−‖xi−xj ‖2

2σ2 ) over all dimensions of the data. The values
of σ were chosen using the heuristics presented in [16] of σ
being the average distance to the kth nearest neighbor using
k = log(N) + 1 where N is the number of data points
The final λ-consensus labelling using the approximation
similar to that using the entire matrix. Note that the medians,
represented by green lines, of the last three iterations on iris
using Mπcc ,t is higher than the λ-consensus result. The
diversity of the clusterers over the vote dataset was so small
that consensus clustering provided no benefit.

V. SUMMARY

With the goals of improving quality and managing di-
versity of consensus clustering, this paper proposed λ-
consensus clustering which extends the consensus clustering
framework with a feedback loop of consensus labels to the
individual clustering processes. The individual clusterings
processes merge the consensus knowledge with its view
of the data using an exponential weighting scheme for
another round of clustering. The extension maintains the low
communication and privacy preservation benefits consensus

clustering. Initial experimental results demonstrate that the
approximations to the consensus information preform as well
as using the entire consensus information.
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Figure 1. λ-consensus clustering with 100 clusterers using k-means on subspace projections, consensus clustering with k-means on X b, and using λ=0.9.
Results are averaged over 10 runs. ARI of partitions are measured against class labels. The red line is the partitioning from that iteration’s consensus
clustering.
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(f)

Figure 2. λ-consensus clustering with 100 clusterers using PRC, consensus clustering with PRC, and using λ=0.9. The clusterers all used the same
Gaussian similarity. Results are averaged over 10 runs. ARI of partitions are measured against class labels. The red line is the partitioning from that
iteration’s consensus clustering. The green bars are the median ARI value of the 100 clusterers. The green bars are the median ARI value of the 100
clusterers.
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