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Abstract

We define a distance measure between 3-D polygonal arcs of equal length, and show that
the minimum value of this distance measure is the smallest eigenvalue of a certain matrix.
Using this, we develop a mismatch measure and a matching algorithm for 3-D polygonal arcs

of unequal lengths.
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[. INTRODUCTION

Matching of 3-D polygonal arcs is a basic problem in computer vision. The problem of
finding an approximate match between short arcs and pieces of a long arc is known as the
segment matching problem ([3], [6]). This problem has potential applications in industrial
parts inspection, motion estimation and dynamic scene analysis. Several algorithms for
matching 2-D arcs have been proposed in the literature (e.g., [3], [13], [14]). For general
space curves, few matching algorithms exist in the literature, e.g., [7], [9], [14] (also, see
[5] for the least-squares estimation problem). Stereo matching of 3-D curves has been
considered in [1]-[2]. Recently, semi-differential invariants have been used to match space
curves [12].

Clearly, it is difficult to extract 3-D curves of equal lengths from any real sensory data.
So, instead of trying to match two 3-D polygonal arcs of equal lengths, it is more realistic
to match a given short 3-D polygonal arc with the subarcs of a long 3-D polygonal arc.
We can then identify the portion(s) of the long arc where there is a best match (up to a
predetermined threshold). If the long arc is partially occluded, then the method developed
in this paper could also be used to match the short arc with the portions of the long arc
that are not occluded. It is well known that a space curve can be approximated by a 3-D
polygonal arc. So, our method can be used to match general spaces curves. We have given
implementation for this case also.

There are several novel features in our approach that distinguishes it from previous works
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on matching of 3-D curves. Unlike the previous works, we use here unit quaternions to
denote 3-D rotations that, as is well known, has the advantage (over other representations
for rotations) in giving a closed form solution. Further, we prove a new result interpreting
the extreme values of the distance measure for two 3-D polygonal arcs of equal lengths as
the eigenvalues of a certain (well defined) 4 x 4 positive semidefinite matrix; the minimum
value of the distance measure corresponding to the minimum eigenvalue of this matrix.
It follows that the matching problem of 3-D curves can now be reduced to the purely
algebraic problem of studying the eigenvalues of a certain matrix. We then could apply
standard methods of numerical linear algebra to estimate the eigenvalues and hence the
matchings (up to any desired degree of accuracy). Our algorithm is practical to implement

and we have included implementations.

II. POLYGONAL ARCS OF EQUAL LENGTHS

A polygonal arc in any d-dimensional Euclidean space R? is defined ([4]) by a set of
points (the vertices of the arc); successive pairs of vertices are joined by line segments (the
sides of the arc). We specify an orientation to each polygonal arc — so it has an “initial”
point and a “final” point; we shall assume without loss of generality that these endpoints

are distinct.

A. Distance Measure

let I and J be two polygonal arcs in R, each of length u. We say that two points P and
( on I and J respectively are corresponding points if the arc length from the initial point
of I to P is equal to the arc length from the initial point of J to ). The distance measure,
M(1,J), is defined to be the sum of the squares of the Euclidean distances between each
pair of corresponding points along the two arcs. If we parameterize the points on each arc
by their arc lengths, ¢, from the initial point of the arc, then the distance measure can be
expressed as

M(1,J) = /u D2(t)dt (1)

0
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where D(t) denotes the usual Euclidean distance between the points in I and J corre-

sponding to the same value of t. The distance measure has the additive property: if I

and J are polygonal arcs which are concatenations of the polygonal arcs {[; : 1 <i < k}

and {J; : 1 < i < k} where for each i the lengths of I; and J; are equal, then M(I,J) =
i M (I, ).

B. Line segments

Consider first the special case when I and J are line segments in R%, each of length
u. Choose any point O as the origin and let r; and ry denote the position vectors of two

general points P; and P, on the line segments I and J respectively. (see Figure 1). Then,
rr=a-+ tlc, ro = b + tgd (2)

where a and b denote the vectors joining O to the midpoints A and B of the line segments
I and J respectively, ¢ and d denote unit vectors parallel to the (positive) directions of
I and J respectively and t;,%, are parameters representing the signed distances of P; and
P; from the midpoints of I and J respectively. Thus, r; and r, are functions of ¢; and ¢,
respectively. When P, and P, are corresponding points, i.e., t; = t3, then denoting this

common value by ¢, we have from (2)
Ity — 1> =]a—b?+t*lc—d]*+2t(a—b)-(c—d)

where - denotes the usual scalar product of vectors. So, from (1) we get

u/ u3

2
P r; —ro/’dt =ula—b)* + — |c—d|? (3)

M(L, 7) = / 12

C. Polygonal arcs

Let I and J be two polygonal arcs of equal lengths u each in R¢. To calculate the
distance measure M(I,.J), we split, hypothetically, the two arcs into k£ (for a suitable k)
line segments I; and J; respectively (1 < i < k) of equal lengths u; such that

k k
I=>"5 J=> J |LI=|Ji|=u 1 <i<k) (4)

i=1 i=1
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where |I;| denotes the length of I;, etc., and summation denotes the concatenation of line
segments. (Here, the endpoints of I;, J; may not be the same as those of the actual sides
occurring in I and J respectively.) The desired splitting of the arcs can be done in many
(straightforward) ways but due to the additive property of the distance measure, M (I, J)
has the same value whatever method for splitting is adopted.

Let a;, b; denote the position vectors of the midpoints of I; and J; respectively, and
c;, d; be unit vectors parallel to the positive directions of I; and J; respectively (Figure 1
corresponds to the case when i = 1). Using (3), we compute the distance measure of each
pair of corresponding line segments I; and J;, and then add them together to obtain the

total distance measure
k u’
M(I,J):Z{u, |ai—bi|2+1—22 ‘Ci—di‘Q} (5)
i=1

From (5) it follows that M(I,J) is a function of the distance between the centers of I;
and J;, the lengths u; (1 < i < k), and of the angle between I; and J; (1 < i < k). Thus
it can be seen that the distance measure M ([, J) remains invariant if the origin is moved

to any other position.

III. MISMATCH MEASURE
A. Properties of distance measure in R?

We now consider polygonal arcs in the space R?, continuing to use the terminology
introduced in section II. We keep the arc I fixed and regard M = M(I,J) as a function
of the position of the arc J relative to I. Our objective now is to determine all 3-D
displacements J — J' that give minimum values for M(I,J'). In such a displacement,
the midpoint of the line segment .J; moves to become the midpoint of the i" line segment
of J' — denote this line segment by J; (1 < i < k). For each i, let b; denote the position
vector of the midpoint of J; and d; denote a unit vector parallel to the positive direction
of J;. The distance measure M (I,.J') has the same form as M(I,.J), given by (5), except

that we need to replace b;, d; by b; and d;- respectively. Thus,
’ k 19 U,3 19
M(L,T) =3 {wla; = bif* + 5l — dif*} (6)

=1
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It is well known that any displacement of a rigid body can be decomposed into a rotation
about an axis through the origin and a translation. There are at least eight commonly
used forms to represent a rotation [8] and we shall choose the one given by unit quaternions
(see e.g., [8], [10]) that has the advantage over other representations in giving closed-form
solutions. For the displacement of J to J', let t be a vector giving the translation com-
ponent and let Rot(q) be a 3 x 3 orthogonal matrix representing the rotation component
depending upon the quaternion q — note that only the rotation component would alter

the orientation of each J;. Thus, for 1 <i <k
b, = Rot(q) b; +t, d; =Rot(q) d; (7)

If q = [q1,¢2,93,44)" is a unit quaternion, then the rotation matrix is given by

G- —G+aG 20— @) 2(q1q3 + ¢2q4)
Rot(q) = 2(q192 + 9394) -G+ ¢ — (1?? +q; 2(¢293 — ¢194) (8)
2(q193 — 9244) 2(g2q3 + q1G4) —¢; — ¢35+ a3+ 43

The proofs of the following results are given in Appendix I.

Theorem 1. For two 3-D polygonal arcs I and J of equal lengths, given any rotation
Rot(q), there is a unique translation t = [t,, t,,t,]* that, together with Rot(q), generates
a displacement of J giving an extreme value of the distance measure M. The translation

t is given by
t= CI — Rot(q)CJ (9)

where Cy and Cy are the position vectors of the centroids of I and J respectively.

Since we are interested in the minimum of the distance measure M (I, .J'), we may ignore
all translations except those generated by (9).

Proposition 2: For two 8-D polygonal arcs I, J of equal lengths, the extreme values of

the distance measure M(I,J) are given by
M(I,J)=q"Gq (10)

where G is a certain real symmetric 4 X 4 positive semidefinite matriz, q is a unit quater-
nion, q° denotes the usual matriz transpose of q and q' Gq is evaluated by standard

matriz multiplication.
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The matrix G is given explicitly in (17).

Theorem 3: For two 3-D polygonal arcs I, J of equal lengths, the distance measure
M(I, J') has a unique minimum for all displacements J — J . Furthermore the smallest
ergenvalue of the matrix G from Proposition 2 is the unique minimum value of the distance
measure M (I, J') and the eigenvector q corresponding to the smallest eigenvalue gives the

displacement J — J by the rotation matriz (8) and the translation (9).

B. Mismatch measure

We define the mismatch measure M*(I,J) between two 3-D polygonal arcs I and J
of equal lengths, as the minimum of all values of M(I,J') where the minimum is being
taken over all possible displacements J of J. In other words, the mismatch measure
between two arcs is the minimum over all translations and rotations on the integral of the
squared distance between corresponding arc points, where corresponding is established by
corresponding arc length displacement from the starting point of each arc. From Theorem
3, it follows that for any pair of 3-D polygonal arcs there is a unique value of the mismatch
measure. Based on Theorem 3, the unique value of the mismatch measure is the smallest
eigenvalue of a certain matrix G.

Due to the additive property of the distance measure, the mismatch measure is inde-
pendent of the method used to split the polygonal arcs. However, as remarked in Parsi
et al. [13] for the 2-D case, the mismatch measure depends on the choice of the initial
points of the two arcs I and J; they suggest that one could begin with an arbitrary choice
of these points, compute the minimum distance measure, then reversing one of the arcs,

recompute the measure and compare the two values.

IV. MATCHING ALGORITHM

In this section we shall describe an algorithm to match a short 3-D polygonal arc with
a long 3-D polygonal arc or a short 2-D polygonal arc with a long 2-D polygonal arc. As
the steps of the proposed algorithm are similar to the one given in Parsi et al[13] for the
2-D case, we shall describe the 3-D matching algorithm only briefly.

Given two 3-D polygonal arcs I and J where |I| > |J|, we wish to match J with all
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possible subarcs I* of I where |I*| = |J|. An obvious brute force method to do this would
be to move J to all possible locations in the 3-D space close to I, calculate the minimum
distance measure M (I*,J) for all subarcs I* with |[I*| = |J|, and then select a match
(according to some pre-selected threshold). However, using the properties described in
Section III; we may develop a more efficient algorithm as follows.

The essential idea of the matching algorithm is to slide the short arc J along the long
arc I and for every position A; along I, calculate the mismatch measure for the subarc I
of I with the initial point A; where |If| = |J|. After visiting all possible locations (once
and only once) we can decide on the best match by taking the minimum of the mismatch
measures at all the locations. The algorithm would terminate after a finite number of steps
since both the arcs I and J are of finite lengths. The run-time of the algorithm depends
on the number of subarcs I; used, and also on the number of line segments needed in the
computation of each M*(I,J). With n; and n; as the number line segments in I and
J, respectively, then an upper bound on the runtime of the algorithm is O(k(n; + n,))
where k is the number of steps taken in sliding J across I. At a given position, a lower
bound for the minimum distance to a position giving a match is (M*(I}, J) —¢)/|J| where
€ is a small threshold value. For a fixed step size, a multi-pass approach may be taken,
using a finer step size in only those areas where a possible match may exist. Alternately
the distance for the next step may be determined dynamically at each position. In the
implementation of the above algorithm, we may represent I and J using the compact code

for 3-D polygonal arcs developed in [4] to reduce further the computational cost.

V. IMPLEMENTATION

We have tested the matching algorithm described in Section IV on a number of synthetic
images. First we give a demonstration that matching of 2-D polygonal arcs is a subset
of matching 3-D polygonal arcs and that the algorithm works well for the matching of
2-D polygonal arcs. Next we illustrate the matching of simple 3-D polygonal arcs. Last
we consider the matching of components of a complex 3-D curve. The implementation is
available for ftp from ftp.cs.unl.edu in directory /pub/drh/matching.

Matching of 2-D arcs may be conducted by embedding the 2-D arcs in a 3-D space and
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applying the algorithm. The resulting values can be extracted back down to the original
2-D plane. Any matches that use nonplanar motion are tossed out as a mismatch. For
an example, let I be the long arc and J be the short arc in Figure 2(a). Embedding
in 3-D and applying the algorithm yields the graph in Figure 2(b) of mismatch measure
versus the starting length on I. Transforming J to J for the lengths A,B,C,D,and E
from Figure 2(b) and superimposing over the original arc I, yields Figure 2(c). This figure
verifies that the minimum value at length D in the histogram corresponds to the best
match in Figure 2(c).

A simple 3-D example is presented next. Let I be the long 3-D polygonal arc and J be
the short 3-D polygonal arc shown from two different viewpoints in Figures 3(a) and 3(b).
The graph of the mismatch measure M*(I, J') versus the starting length on I is presented
in Figure 3(e). From the graph, it is seen that the minimum value of M*(I,.J') occurs at
length B. The J for length B and the J'’s for lengths A and C' are superimposed over I
for the two viewpoints of Figure 3(a) and 3(b) in Figure 3(c) and 3(d) respectively. The
J' corresponding to length B gives the best match to a subcomponent of 1.

The last example is a complicated curve I(t). The curve is approximated by the polyg-
onal arc I by letting I be the polygonal arc whose vertices are given by sampling I(¢)
for the integer values of ¢ from zero to two hundred. The polygonal arc I is displayed
in two different viewpoints in Figures 4(a) and 4(b). The transitions of curve I(t) at
t = 28, 100, and 172 are the focus of our matching effort. The short arcs J,, Jy, and J,.
corresponds to subcomponents of I(t) covering ¢ = 28, 100, and 172 respectively which
have been rotated and translated to the origin and sampled for the integers 0 to 10. The
graphs of the distance measure M (I, J ') versus length for J,, Jp, and J. are given in Figures
4(c), 4(d), and 4(e) respectively. The J' that gives the minimum distance measure for J,,
Jy, and J, are superimposed over the I and displayed in Figure 4(f) and 4(g) respectively

and show that the correct matches have been found.

VI. CONCLUSIONS

Matching of 3-D arcs is a fundamental problem in computer vision with many applica-

tions. We have defined a distance measure for 3-D polygonal arcs of equal lengths and
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have shown that for two 3-D arcs of equal lengths the distance measure has a unique min-
imum. Using this result, we develop an algorithm for matching two polygonal arcs of not
necessarily equal lengths. This algorithm is particularly useful to match a short arc with
the subarcs of a given long arc. Our method generalizes a technique proved earlier for 2-D
arcs in [13]. Since a space curve can be approximated (up to any degree of accuracy) by
a 3-D polygonal arc, the proposed matching algorithm may be used to match arbitrary
space curves. It would be of interest to investigate the response of the method to noisy
data sets of 3-D arcs and to determine which random perturbation models under which

the distance measure is appropriate.
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APPENDIX I

In this Appendix we provide the proofs the results which were stated in section ITI.A.

Proof of Theorem 1: Let J be the new position of the arc J under the given rotation
Rot(q) and any translation t = [t,,#,,t,]7. The distance measure M(I,J) is given
by (6). From elementary calculus, M has an extreme value when the first order partial
derivatives of M with respect to t is the zero vector. Differentiating M partially with
respect to t and equating the result to the zero vector, we obtain

k k
i=1 i=1

It is standard that the centroids of the arcs I and J are given by

1 k 1 k
:_E iiaCZ_E:ibi 12
Uiz BTy i=1 ) 12)
Substituting (12) into (11), we now get (9) and this completes the proof of Theorem 1. O

Proof of Proposition 2: Starting with (6) and (7) we use Theorem 1 to replace the

translation vector by (9) and obtain

M(I1,J) = Z {ui|az~ — Rot(q)b; — C; + Rot(q )CJ| 123| c; — Rot(q)di\Q} (13)

=1

Embed a;, b;, c;,d; into the algebra of quaternions as imaginary quaternions. It is well
known (e.g. [8, p. 438]) that rotating a point v in the 3-D space may be done by the

quaternion multiplication v — qv@. Thus, (13) can be written as

k 3
I J’ :Z{ui\az qbzq C[-f-chq‘ 12| ,—qdz(_l‘Q} (14)

=1
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Since |q|? = 1, 7! = q, and for two quaternions r and s, |r|?|s|? = |rs|?, we may multiply

both sides of (14) by |q|?, obtaining

k u3
M) =3 {ulaa @b~ Cra+ G, + e - ad ) (15

=1

From [15], the multiplication of two quaternions may be calculated conveniently by a

certain matrix multiplication. If p and q are quaternions with q = [q1, g2, g3, g4], then

pq = R(q)p, and gp = L(q)p where

g4 —q3 QG2 ¢ g4 g3 —q q1
g3 94 —q1 Q2 —q3 g4 q1 Q2
L(q) = R(q) =
—q2 ¢ qs Q3 92 —q1 44+ Q3
|~ —92 —q3 qaf |~ —Q2 —q3 qaf
Then (15) can be written as

M(I,J) =3 {W\(L(az‘) —R(b;) — L(C;) + R(C))) q|* + %KL(CD - R(di)) Q|2} (16)

=1

Define two 4 x 4 matrices A = L(a;) — R(b;) — L(C;) + R(C,) and B = L(c;) — R(d;).
Substituting A and B into (16) and denoting

k 3
G =Y {wATA + %BTB} (17)
i=1
we obtain (10) from (16). This completes the proof of the result. O

Proof of Theorem 3: Since q'q = 1, (10) may be written as
M(I,J') =q"Ga+ (1 —q"q) (18)

Taking the partial derivatives of M with respect to q and setting to zero for the extreme

values, we get from (18)
Gq=\q (19)

which shows that A is an eigenvalue of G. Thus the eigenvectors of G give the extreme
values for M. Since G is a real symmetric positive semidefinite matrix, all of its eigenvalues
will be nonnegative. Premultiplying both sides of (19) by q’ yields g/ Gq = A which
shows that the smallest eigenvalue of G is the minimum of the distance measure M. This

completes the proof of the result. O

September 27, 1996 DRAFT



Figures 12

O

Fig. 1. Computation of Distance Measure for Line Segments
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Figures 13
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(a) Original Arcs I and J (b) Distance measure M (I, JI) (c) I and a variety of Js
versus Starting length on I
Fig. 2. Matching 2-D Polygonal Arcs as a Subset of Matching 3-D Polygonal Arcs
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Figures

(c) I and J'’s, First viewpoint (d) I and J', Second viewpoint
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(e) Distance measure M (I, J ’) versus starting length

Fig. 3. 3-D Polygonal Arc Matching
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(b) Original Arcs I and J, Second viewpoint
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Figures 15

(a) Polygonal arc I, First viewpoint (b) Polygonal arc I, Second viewpoint
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(c) Distance Measure for J, ver- (d) Distance Measure for J;, ver- (e) Distance Measure for J. ver-
sus Length sus Length sus Length

(f) Polygonal arcs I, J,;, J,’,, and J;, First view- (g) Polygonal arcs I, J;, J,’,, and J;, Second
point viewpoint

Fig. 4. 3-D Curve Matching
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