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ABSTRACT

Relevance feedback has been used in many techniques for
learning query modification and/or distance reweighting
to improve the effectiveness of content-based image re-
trieval. These techniques, however, only use intra-query
learning (i.e., short-term learning within a single query
session). We propose a retrieval method that incorpo-
rates inter-query (i.e., long-term) learning into the query
modification and distance reweighting framework. The
semantic similarity of the current query with a set of past
queries is used to control the exploitation of inter-query
learning from historical data. For example, a local initial
distance metric is created that is more informed than the
commonly used default of Euclidean distance. The inter-
query learning relies on the geometric view of one-class
support vector machines for creating regions of support
of past retrieval concepts. Our proposed method has been
implemented using probabilistic feature relevance learn-
ing as the method for the intra-query distance reweighting
and query modification. The efficacy of our approach is
validated using real world data.

1. INTRODUCTION

Relevance feedback (RF) has been used in many tech-
niques for learning query modification [6, 7, 12] or dis-
tance reweighting [6, 7, 10, 11]. Query modification aims
at moving the query towards the region containing rele-
vant images. Distance reweighting is based on updating
the weights of a weighted distance metric so that rele-
vant images are closer. Some systems incorporate both
approaches [6, 7]. Probabilistic feature relevance learn-
ing (PFRL) [10] computes flexible metrics for producing
retrieval neighborhoods that are elongated along less rel-
evant dimensions and constricted along most influential
ones. The technique has shown promise in a number of
database applications. It, however, becomes less appeal-
ing in situations where all input variables have the same
local relevance, and yet retrieval performance might still
be improved by simple query shifting. On the other hand,
MARS[12] attempts to improve retrieval performance by
moving the query towards the region of the feature space

containing the relevant images and away from the region
containing non-relevant images. In [6], a principled ap-
proach is presented that combines PFRL, as in [10], with
query shifting to try to achieve the best of both worlds.
These techniques, however, only use intra-query learning
(i.e., short-term learning within a single query session).
Inter-query learning (i.e., long-term learning accumulated
over the course of many query sessions) can also be used
to enhance retrieval performance.

A few approaches [5, 8, 15] attempt inter-query learn-
ing. In [5] latent semantic analysis was used to pro-
vide a generalization of past experience. The images in
a database are viewed as the fundamental vocabulary of
the system. The RF from each query is considered as a
document composed of many terms (images). Both [8]
and [15] take the approach of complete memorization of
prior history. In [8] the correlation between past image
labeling is merged with low-level features to rank images
for retrieval. The model estimates the semantic correla-
tion between two images based on their co-occurrence
frequency (i.e., the number of query sessions in which
both images were labeled relevant). Intuitively, the larger
the co-occurrence frequency of two images is, the more
likely that they are semantically similar. In [15] the extra
inter-query information is efficiently encoded by adding a
virtual feature to the feature vector of an image.

In this paper, we propose a retrieval method that in-
corporates inter-query learning into the query modifica-
tion and distance reweighting framework. The semantic
similarity of the current query with a set of past queries
is used to control the exploitation of inter-query learn-
ing from historical data. The inter-query learning relies
on the geometric view of one class support vector ma-
chines (1SVM) for creating regions of support of past
retrieval concepts. We implement our proposed method
using PFRL as the method for the intra-query distance
reweighting and query modification.

2. ONE-CLASS SUPPORT VECTOR MACHINE

In a one-class classification problem, data from only one
of the classes (the target class) is available. For instance,
user-labeled relevant images give us information about



the user’s high level concept. Thus, the task is to create a
boundary around the target class such that most of the tar-
get data is included while, at the same time, minimizing
the risk of accepting outliers [13].

The strategy that is followed in a 1SVM consists of
mapping the training data to a higher dimensional fea-
ture space and then attempting to include most of it into
a hypersphere of minimum size. Consider training data���������	

where
����

���

is the feature vector of the �����
user-labeled relevant image. Let ��� ���������

be a non-
linear mapping from the original ( � dimensional) input
space to the ( � dimensional) feature space with �! "� .
The task is to minimize the following objective function
(in primal form) #%$'&(*),+.- /�),+102- 34),+658789;:=< �> ? @ 	*A

?
with constraints that (almost) all the training data are
within the hypersphere (i.e., BCB �ED �GF�HJILK B'B 9NM 7 9 :A ? O A ?  QP OSRSTVU,OXWYO�Z�Z�Z[O]\ ), where 7 and

K
are the

radius and center of the hypersphere, respectively. The
parameter P M < M U is the soft-hard margin penalty and
it gives the tradeoff between the size of the hypersphere
and the number of training data that can be included. By
setting partial derivatives to 0 in the corresponding La-
grangian we obtain

K T_^ �? @ 	a` ? �ED � F H . Replacing par-
tial derivatives into the Lagrangian and noticing that

K
is

a linear combination of the training data (which allows us
to use a kernel function), the following objective function
(in dual form) is obtained#%$'&b �>? @6c]@ 	 `

? ` c�d D � F O ���[HeI �>? @6c]@ 	 `
? d D � F O � F H

with constraints P M ` ? M < Of^ �? @ 	g` ? ThU , where d is
an appropriate Mercer kernel. We use the Gaussian ker-
nel d D � F O ���iH Tkj,l*mnm oqp'l6o[rsmnm t]uXvwt . A quadratic program-
ming method is used to find the optimal

`
values in the

objective function [13].

3. PROPOSED METHOD

Suppose that we have a retrieval method that performs
query modification and distance reweighting. After thex
th RF iteration for the R th query, let y � ? 
z� �

be the
adjusted query point, {|�? 
k���

be the adjusted query
weights for an arbitrary weighted distance metric, and} ? T �~��� O�� c �~� 	 be the set of cumulative retrievals for theR th query, where

���
denotes the feature vector represent-

ing the � th retrieved image, and � c is either 1 (relevant
image) or 0 (non-relevant image) marked by the user as
the class label associated with the � th retrieved image. At

the end of the search session, after � RF iterations, intra-
query learning is given by yG�? , {|�? , and

} ?
. In general,

this intra-query learning is lost when the search session is
over.

Inter-Query Learning

Because of their straightforward interpretation as the den-
sity of past interaction in a local area of the feature
space, we have chosen 1SVMs as our long term learn-
ing structure. Let

}S�? T �~� � B ��� � O�U ��
 } ? � and
} l? T�~� � B ��� � O P ��
 } ? � be the set of cumulative relevant and

non-relevant retrieved images, respectively. At the end of
the search session, after � RF iterations, we use

}��?
as

training data for a 1SVM. Then, we associate yG�? and {|�?
with the resulting region of support (i.e., hypersphere) in
feature space. Thus, the inter-query learning relies on the
geometric view of 1SVMs for creating regions of support
of past retrieval concepts. The basic idea is that future
query images that fall within the same region of support
can take advantage of inter-query learning. Thus, instead
of “starting from scratch”, the previously learned y��? and{ �? can be exploited.

We expect to have overlapping regions of support and
thus queries that fall into more than one hypersphere.
Thus, in order to identify the regions of support that are
most likely to contain relevant images, we have to deter-
mine semantic similarity between the query image’s con-
cept and the concepts associated with the hyperspheres
into which it falls. By storing the user’s RF about each
retrieved image on a particular search session (i.e.,

} ?
)

along with the resulting hypersphere � ? , we are able to
capture the semantics of the retrieval concept associated
with � ? , denoted by �2D�� ? H . This information can then
be used as a basis for determining semantic similarity.
Therefore, in addition to 1SVM parameters, other infor-
mation is stored in our long term learning structure which
we will refer from now on as a hypersphere and is defined
as � ? T � yg�? O {|�? O } ? O KYF O 7 ? � , where

K�F
, and 7 ? are the

center and radius of the hypersphere, respectively.

Semantic Similarity

Since for every query image, there is a corresponding hy-
persphere, we only need to be able to determine seman-
tic similarity between concepts associated with hyper-
spheres. The intuition for determining semantic similarity
between �2D�� ? H and �2D�� c H is that if images are jointly la-
beled as relevant in both

} ?
and

} c , it is likely that �2D�� ? H
and �2D�� c H have similar semantic content. Also, the larger
the number of overlapping relevant images, the higher the
semantic similarity between them can be expected. The
number of overlapping images for which there is RF dis-



agreement should also have an important negative effect
on the semantic similarity. We now explain how the se-
mantic similarity function is derived.

The basic idea is based on the observation that seman-
tic similarity between �2D�� ? H and �2D�� c H should be based on
similarity between their corresponding RF distributions
(i.e.,

} ?
and

} c ). Let � ? be a random variable with sam-
ple space � ? T � D ��� O]� c H B'D ��� O�� c H�
 } ? � (i.e., an event
is the labeling of an image as relevant or non-relevant).
Let � ? D]D ��� O�� c H B } ? H be the probability that a user assigns
label � c to

���
when searching for images belonging to��D�� ? H . Thus, ��D ��� O�� c H�
 � ? O � ? D�D ��� O�� c H B } ? H T�U . Let’s

assume that ��D�� ? H T �2D�� c H . Then, let � ? c be a ran-
dom variable with sample space � ? c T � D � � O�� c H B � � 
D }��?�� }��c Hi� D }��?�� } lc Hi� D } l?f� }��c Hi� D } l?�� } lc Hs� (i.e.,
events involving images that appear in both

} ?
and

} c ).
Similarly, � ? c D�D � � O]� c H B } ? O } c H is the probability that a
user assigns label � c to

� �
when searching for images be-

longing to �2D�� ? H T �2D�� c H . Thus, � ? c D]D ��� O�� c H B } ? O } c H TU if
���z
 }��?�� }��c or

����
 } l?�� } lc . Other-
wise, � ? c D]D ��� O�� c H B } ? O } c H T P Zn� if

����
 } �? � } lc or����
 } l?�� } �c . We can use the entropy impurity [4]
of � ? c ’s distribution to measure the distance between the
distributions of � ? and � c . The entropy impurity (or
just entropy), R D�� H , of random variable � with sample
space � is defined as R D�� H T I ^�� ),� ��D�  H�¡�¢~£ 9 ��D�  H ,where ��D�  H is the probability of event   . Observe thatR D�� ? c H T B } �?¤� } lc8B : B } l?¥� } �c8B (i.e., number of
mismatches). Quantifying semantic distance in this way
makes intuitive sense. As the number of mismatches in-
creases, their corresponding event probabilities decrease,
entropy (impurity) increases, and support for our initial
assumption (i.e., that �2D�� ? H T �2D�� c H ) decreases.

Note that P M R D�� ? c H M B � ? c B . The normalized dis-
tance function � R§¦ x D¨�2D�� ? H O �2D�� c H�H T ?�©Cª «­¬]®m � «¯¬ m could be used
as a measure of semantic distance between �2D�� ? H and��D�� c H . For convenience, we convert to the normalized
similarity measure ¦�R±° D���D�� ? H O �2D�� c H]H T m � «­¬ m l 9 ?�©'ª «¯¬ ®m � «­¬ m .
Note that

I U M ¦�R±° D���D�� ? H O �2D�� c H�H M U . The reason
for rescaling to the range [-1,1] is that it allows semantic
disagreement to have an effect on the voting scheme that
we use for combining evidence. This does not affect the
ranking based on semantic similarity. Thus, the semantic
similarity between �2D�� ? H and ��D�� c H is defined as¦�R�° D¨�2D�� ? H O �2D�� c H]H T B � ? c B I WwR D�� ? c HB � ? c BT B }��?�� }��cEBB � ? c B I B }��?�� } lc8B : B } l?²� }��c8BB � ? c B
Notice that, intuitively, the first and second term in the
formula are the maximum possible semantic agreement
and disagreement respectively.

Proposed Method

Let ³ 
´��� be the feature vector of the µ th query image.
Initially, ya¶· T ³ . Let ¸ T � � ? ��¹ 	 be the set of hyper-
spheres into which yg¶· falls. In the following, we assume
that º¼»½P and go through the main stages of our proposed
method. In the case that º T P , inter-query learning is
not exploited. At the beginning of the search session, the
system does not have any knowledge about the seman-
tics of the query image (i.e.,

} · T¿¾ ). Nevertheless, we
can still identify the set of � ? 
 ¸ that are most likely
to contain relevant images. The basic assumption is that
if a majority of ��D�� ? H O � ? 
 ¸ are semantically similar,
their concept has a higher density in that particular region
of the feature space and thus there is more evidence that
the query image belongs to that concept. In other words,
each � ? 
 ¸ classifies the query image as belonging to�2D�� ? H . Therefore, the semantic similarity between everyD��2D�� ? H O �2D�� c H�H pair determines the degree to which � ? and� c are “voting” for the same concept. Thus, the set of� ? 
 ¸ whose �2D�� ? H has highest semantic agreement are
the most likely to contain relevant images.

The first stage sets {|¶· T � U�À � ���	 , ya¶· T ³ and
computes an º by º “concept similarity” matrix <
whose D RsO � H ��� entry is ¦�R±° D¨�2D�� ? H O �2D�� c H]H . Intuitively,< ? TÁ^ ¹c]@ 	 ¦�R±° D¨�2D�� ? H O �2D�� c H�H is the degree by which�2D�� ? H O �.� ? 
 ¸ agree with (or are semantically similar
to) �2D�� ? H . Then, ya¶· and {�¶· are updated as follows

y ¶ ·�Â `½Ã ¹> ? @ 	gÄ
? y �?�Å : D U I ` H y ¶ ·

{ ¶·8Â `½Ã ¹> ? @ 	aÄ
? { �?*Å : D U I ` H { ¶·

Ä ? T ��Æ � © ¶ - Ç « ®^�È«CÉ�Ê ��Æ � © ¶ - Ç «¨® ` T ^�È«CÉ�Ê ��Æ � © ¶ - Ç « ®¹ t
Thus

`
adapts based on the density of homogeneous se-

mantic concepts. For instance, if there is complete se-
mantic agreement among �2D�� ? H O �g� ? 
 ¸ ,

` TËU and
inter-query learning is completely exploited by settingya¶· T D U�À º H ^ ¹? @ 	 yg�? and {�¶· T D U�À º H ^ ¹? @ 	 {|�? . On
the other hand, when there is complete semantic disagree-
ment,

` T P and inter-query learning is not used.
With each RF iteration,

} · grows. In the second stage,
the system uses this new information to revise its pre-
vious choices. Thus, after the

x
th RF iteration, the se-

mantic similarity between the query image’s concept and�2D�� ? H O �.� ? 
 ¸ is determined. Then, based on this infor-
mation, past inter-query learning choices are revised

y � · Â ` Ã ¹> ? @ 	.Ì
? y �? Å : D U I ` H y ¶ ·



{ �· Â ` Ã ¹> ? @ 	GÌ
? { �? Å : D U I ` H { ¶·

Ì ? T ��Æ � © ¶ - Í ? � ©­Î�© ��Ï ® - Î�© � «�®�®�®^�È«CÉ�Ê ��Æ � © ¶ - Í ? � ©­Î�© � Ï ® - Î�© � « ®�®�®` T ^ È«'É�Ê ��Æ � © ¶ - Í ? � ©­Î�© � Ï ® - Î�© � « ®�®�®¹
In the third stage,

` Â!Ð b D x H , where Ð b D x : U HÒÑ Ð b D x H
(i.e.,

`
decreases so that, as the number of RF iterations

increases, we rely more on intra-query learning). Then,
intra and inter-query learning are combinedy � ·EÂ ` y � · : D U I ` H y F­Ó~Ô±Õ 3{ �· Â ` { �· : D U I ` H { F­Ó~Ô±Õ 3
where y F¯Ó~ÔÖÕ 3 and { F¯Ó~ÔÖÕ 3 are the modified query location
and distance weights computed by the particular query
modification and reweighting method, based on intra-
query learning

} · . Thus, in this case,
`

determines the
ratio of intra to inter-query learning to be used in process-
ing the query. It adapts based on the density of homoge-
neous semantic concepts and the number of RF iterations.
The second and third stages are repeated after each RF it-
eration.

4. PFRL

In PFRL [10], retrieved images with RF are used to com-
pute local feature relevance. If we let the class label� 
¼� P O�U � at query

�
be treated as a random variable from

a distribution with the probabilities
� �8×�D U B �GH O �8×�D�P1B �GHs� ,

we have Ð D �GH ZT �8×�D �ØTÁU B �GH TÚÙ D � B �GH . In the ab-
sence of any variable assignments, the least-squares es-
timate for Ð D �GH is Ù|Û Ð1Ü TÞÝ Ð D �GH�ß D �GH � � where

ß D �GH
is the joint density. Now given only that

�
is known

at dimension   ? T µ ? . The least-squares estimates be-
comes Ù|Û Ð B   ? T µ ? Ü T!Ý Ð D �GH¨ß D � B   ? T µ ? H � � . Hereß D � B   ? T µ ? H is the conditional density of the other input
variables. In image retrieval, Ð D�³ H T�U , where ³ is the
query. Then Û D Ð D�³ HfI P HfI D Ð D�³ HfI Ù|Û Ð B   ? T µ ? Ü H Ü TÙ|Û Ð B   ? T µ ? Ü represents a reduction in error between the
two predictions. Thus, a measure of feature relevance
at query ³ can be defined as × ? D�³ H TàÙ|Û Ð B   ? T µ ? Ü .
The relative relevance can be used as a weighting scheme
for a weighted d -nearest neighbor search ( d NN) withá ? D�³ H T â�ã�ä «�ånæ±ç^�èé É�Ê â ã�ä é å¯æ�ç , where ê is a parameter that can

be chosen to maximize(minimize) the influence of × ? oná ? . For further details, see [10].

PFRL with Query Shifting

PFRL becomes less appealing in situations where all the
input variables have the same local relevance and yet re-

1. Initialize
x T P , ya�· T ³ , {��· T � U�À � �w� , } · Të¾

2. Compute d nearest images to yg�· using {��·
3. User marks the d images
4. While More RF Iterations Do

4.1.
x Â x : U

4.2.
} · Â } · �ì����� O�� c �~í 	

4.3. Update {|�· using
} ·

4.4. Compute î Õ ; ya�· Â î Õ
4.5. Compute d nearest images to y.�· using {|�·
4.6. User marks the d images

Figure 1: PFRL with query shifting (PFRL+ î Õ )
trieval performance might still be improved by simple
query shifting towards îGï T 	ð�ñÏ ^ o )4ð�ñÏ � . A PFRL al-
gorithm combined with query shifting (PFRL+ î Õ ) is sum-
marized in Figure 1.

Note that training data in PFRL+ î Õ (for computing the
relative feature relevances used to determine the d NN
in the next iteration) consists of all previous (cumulative)
retrieved images. This is an improvement over the orig-
inal PFRL where training data consists only of images
retrieved at the current RF iteration.

PFRL with Query Shifting and Inter-Query Learning

In PFRL and PFRL+ î Õ , all information collected during a
search session is lost at the end of the session. We imple-
ment our proposed method using PFRL+ î Õ as the method
for the intra-query distance reweighting and query mod-
ification. The M-tree [2] data structure is used for the
efficient search of hyperspheres. This implementation of
our proposed method (PFRL+ î Õ +1SVM) is summarized
in Figure 2. In the figure, {�òqó Õ�ô refers to the distance
weights as computed by PFRL.

5. EXPERIMENTAL RESULTS

In the following we compare the retrieval performance of
PFRL, PFRL+ î Õ , and PFRL+ î Õ +1SVM on real data sets.
We have also implemented two techniques that exploit
inter-query learning, the virtual feature (VF) approach
[15] and the statistical correlation (SC) method [8]. The
retrieval performance is measured by precision,which is
the fraction of relevant images in the retrieval set. The
following data sets were used for evaluation:

Texture-there are 40 different texture images that are
manually classified into 15 classes. Each of those im-
ages is then cut into 16 non-overlapping images of size
128x128. Thus, there are 640 images in the database. The



1. Initialize
x T P , yg�· T ³ , {��· = � UwÀ � ��� , } · Tõ¾ ,` T�U

2. Form ¸ T � � c � ¹ 	
3. If B ¸¼B T P go to 5
4. Exploit Inter-Query Learning

4.1. Compute
� Ä ? �~¹? , `

4.2. ya�· Â `ìö ^ ¹? @ 	 Ä ? yg�?e÷ : D U I ` H ya�·
4.3. {��· Â `øö ^ ¹? @ 	 Ä ? {|�? ÷ : D U I ` H {��·

5. Compute d nearest images to yg�· using {��·
6. User marks the d images
7. While More RF Iterations Do

7.1.
x Â x : U

7.2.
} · Â } · �ì��� � O�� c ��í?

7.3. If B ¸�B T P go to 7.5
7.4. Revise Inter-Query Learning

7.4.1. Compute
� Ì ? ��¹? , `

7.4.2. yg�· Â `ìö ^ ¹? @ 	 Ì ? yg�? ÷ : D U I ` H ya¶·
7.4.3. {|�·EÂ `øö ^ ¹? @ 	 Ì ? {|�?*÷ : D U I ` H {�¶·

7.5. Compute {�òqó Õ�ô , î Õ ; ` Â�Ð b D x H
7.6. ya�· Â ` ya�· : D U I ` H î Õ
7.7. {��· Â ` {��· : D U I ` H {%òqó Õ�ô
7.8. Compute d nearest images to y.�· using {��·
7.9. User marks the d images

8. Use
} �· as training data for a 1SVM

9. Save � · T � ya�· O {��· O } · O K · O 7 · �
Figure 2: PFRL with query shifting and inter-query learn-
ing (PFRL+ î Õ +1SVM)

images are represented by 16 dimensional feature vectors.
We use 16 Gabor filters (2 scales and 4 orientations).

Letter-there are 20,000 character images, each repre-
sented by a 16-dimensional feature vector. There are 26
classes of the 2 capital letters O and Q. The images are
based on 20 different fonts with randomly distorted let-
ters.

To determine the free parameters, a ten-fold cross-
validation was performed for both data sets. Figures 3 and
5 show precision in the initial retrieval set (i.e., with no RF
iterations) with respect to different data levels. The data
level is the amount of accumulated inter-query learning
(i.e., number of queries processed) relative to the num-
ber of images in the data set. An intra-query-learning-
only RF approach forms the initial retrieval set by do-
ing a d NN search. The VF approach requires at least
one RF iteration. Thus, on initial retrieval,VF, PFRL and
PFRL+ î Õ have the same performance as a d NN search.
As we can observe from those figures, precision in the ini-
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Figure 3: Precision vs. Data Level in Initial Retrieval Set.

tial retrieval set can be drastically improved by exploiting
inter-query learning and keeps improving as the data level
increases. This results in a reduction on the number of RF
iterations that are needed to satisfy a query. Thus, from
the user’s perspective, it is very beneficial since users can-
not stand too many RF iterations.

Figures 4 and 6 show precision after one RF iteration
with respect to different data levels. As we can observe,
precision increases after one RF iteration. The amount
of improvement obtained when going from one to two RF
iterations is much smaller. This is a desired property since
users do not want to perform many RF iterations. We
can observe that, with low data levels, there is an initial
decrease in precision in both VF and SC. This is due to
the fact that those methods use a fixed ratio of intra to
inter-query learning to form the retrieval set. Our method
is based on an adaptive weighting of inter-query learning
and thus, does not suffer from this problem.

6. CONCLUSIONS

This paper presented a novel retrieval method that in-
corporates inter-query (i.e., long-term) learning into the
query modification and distance reweighting framework.
The experimental results show convincingly that PFRL
with query shifting and inter-query learning outperformed
either PFRL with query shifting or PFRL alone. The
retrieval performance is constantly improved by the in-
tegration of inter-query learning. Furthermore, perfor-
mance can be drastically improved in the initial retrieval
set where both PFRL and PFRL+ î Õ require at least one
iteration of RF to provide some improvement.
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Figure 4: Precision vs. Data Level with One RF Iteration.
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