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Abstract

The main idea of content-based image retrieval (CBIR) is to search on an image’s visual content directly. Typically, features (e.g.,
color, shape, texture) are extracted from each image and organized into a feature vector. Retrieval is performed by image example where
a query image is given as input by the user and an appropriate metric is used to find the best matches in the corresponding feature space.
We attempt to bypass the feature selection step (and the metric in the corresponding feature space) by following what we believe is the
logical continuation of the CBIR idea of searching visual content directly. It is based on the observation that, since ultimately, the entire
visual content of an image is encoded into its raw data (i.e., the raw pixel values), in theory, it should be possible to determine image
similarity based on the raw data alone. The main advantage of this approach is its simplicity in that explicit selection, extraction,
and weighting of features is not needed. This work is an investigation into an image dissimilarity measure following from the theoretical
foundation of the recently proposed normalized information distance (NID) [M. Li, X. Chen, X. Li, B. Ma, P. Vitányi, The similarity
metric, in: Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms, 2003, pp. 863–872]. Approximations of the Kol-
mogorov complexity of an image are created by using different compression methods. Using those approximations, the NID between
images is calculated and used as a metric for CBIR. The compression-based approximations to Kolmogorov complexity are shown
to be valid by proving that they create statistically significant dissimilarity measures by testing them against a null hypothesis of random
retrieval. Furthermore, when compared against several feature-based methods, the NID approach performed surprisingly well.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, the rapid development of information
technologies and the advent of the Web have accelerated
the growth of digital media and, in particular, image collec-
tions. As a result and in order to realize the full potential of
these technologies, the need for effective mechanisms to
search large image collections becomes evident. The tradi-
tional keyword-matching approach to image retrieval uses
a textual representation based on the manual annotation of
images with descriptive keywords. This is not only subjec-
tive and error-prone but also very time-consuming and
1077-3142/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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cumbersome for large image collections. Recently, some
approaches for automatic image labelling [41,47,52] have
been proposed as an attempt to improve this manual anno-
tation process. In [41], image recognition techniques are
used for automatically assigning descriptive keywords to
images. Their approach uses only a limited number of key-
words. Furthermore, because image recognition techniques
are not completely reliable, automatically assigned key-
words still have to be verified by a human. In [47], the tex-
tual context of images in a web page is used to
automatically extract descriptive keywords. The collateral
text that usually accompanies an image (e.g., captions) is
exploited in [52]. The performance of those approaches is
not as high as that obtained with manual annotation and
their applicability is limited in situations where there is
no textual context (e.g., a photo album). Also, in the case
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of web image retrieval and unlike text-based image retrie-
val that uses well-organized captions [48], not all words
in an HTML file are related to an image. More impor-
tantly, textual descriptions can only begin to capture the
richness and complexity of an image’s visual content.

To overcome these problems, content-based image
retrieval (CBIR) [49] was proposed in the early 90’s. The
idea is to search on an image’s visual content directly.
Retrieval is performed by image example where a query
image is given as input by the user and an appropriate met-
ric is used to find the best matches in the corresponding fea-
ture space. In traditional approaches [11,13,24,35,37,
46,51,55], each image is represented by a set of global fea-
tures that are calculated by means of uniform processing
over the entire image and describe its visual content (e.g.,
color, texture). Users usually look for particular objects
when describing the semantic interpretation of an image.
Thus, due to global image properties affecting the recogni-
tion of certain objects depicted in an image, low retrieval
performance is often attained when using global features.

In region-based image representations [3,5,33,54], the
use of local features that describe each of a set of seg-
mented regions in an image provides a more meaningful
characterization that is closer to a user’s perception of an
image’s content. Many image segmentation algorithms
have been proposed. Object (or strong) segmentation is
defined as a grouping of the image pixels into regions such
that each region contains all the pixels of a single physical
object and nothing else. It is an extremely difficult image
processing task mainly due to the fact that most segmenta-
tion algorithms use low-level data-driven properties to gen-
erate regions that are homogeneous according to some
criterion. Unfortunately, it is very often the case that such
regions do not correspond to meaningful units (i.e., physi-
cal objects). Some approaches (e.g., [12]) have been pro-
posed that can learn object categories. However, due to
the great difficulty of accurately segmenting an image into
regions that correspond to a human’s perception of an
object, several approaches have been proposed
[5,33,50,54] that consider all regions in an image for deter-
mining similarity. As a result, the problems of inaccurate
segmentation are reduced.

Integrated region matching (IRM) [33] is proposed as a
measure that allows a many-to-many region mapping rela-
tionship between two images by matching a region of one
image to several regions of another image. Thus, by having
a similarity measure that is a weighted sum of distances
between all regions from different images, IRM is more
robust to inaccurate segmentation. The image segmenta-
tion algorithm that is used in IRM first partitions an image
into blocks of 4� 4 pixels. Then, a feature vector
f ¼ ½f1; f2; f3; f4; f5; f6�T representing color and texture
properties is extracted for each block. The first three fea-
tures are the average color components and the other three
represent energy in high frequency bands of the wavelet
transforms [8,39]. The k-means algorithm is then used to
cluster the feature vectors into several regions. The number
of regions is adaptively chosen according to a stopping cri-
teria. A feature vector h ¼ ½h1; h2; h3�T is then extracted for
each region to describe its shape characteristics. The shape
features are normalized inertia [16] of order 1 to 3. A region
is described by R ¼ ff̂; hg, where f̂ is the average of the fea-
ture vectors of all blocks assigned to the region. Recently, a
fuzzy logic approach, unified feature matching (UFM) [5]
was proposed as an improved alternative to IRM. UFM
uses the same segmentation algorithm as IRM. In UFM,
an image is characterized by a fuzzy feature denoting color,
texture, and shape characteristics. Because fuzzy features
can characterize the gradual transition between regions in
an image, segmentation-related inaccuracies are implicitly
considered by viewing them as blurring boundaries
between segmented regions. As a result, a feature vector
can belong to multiple regions with different degrees of
membership as opposed to classical region representations
in which a feature vector belongs to only one region. The
similarity between two images is then defined as the overall
similarity between two sets of fuzzy features. A fuzzy fea-
ture is defined by a membership function that measures
the degree of membership of a feature vector x to the fuzzy
feature.

A method of measuring similarity of images in a data-
base to a query is needed when completing an image retrie-
val request. If the images in the database are annotated
with text, then standard text-based information retrieval
methods may be used. In the case of CBIR, the feature vec-
tors are viewed as points in a space and a distance metric is
used to select the points closest to the query and retrieve
the corresponding images. This approach suffers from the
fact that there is a large discrepancy between the low-level
visual features that one can extract from an image and the
semantic interpretation of the image’s content that a partic-
ular user may have in a given situation. That is, users seek
semantic similarity but we can only provide similarity
based on low-level visual features extracted from the raw
pixel data. This situation, known as the semantic gap, is
exacerbated when the retrieval task is to be performed in
broad image domains (e.g., the Web) where images with
similar semantic interpretations may have unpredictable
and large variability in their low-level visual content. In
contrast, when the retrieval task is performed in narrow
domains (e.g., medical images, frontal views of faces) usu-
ally there are specific assumptions particular to the applica-
tion that, for a given semantic interpretation, limit the
variability of its corresponding low-level visual content.
As a result, it is easier to find links between low-level visual
content and semantic interpretations (i.e., the semantic gap
is smaller).

Relevance feedback (RF) learning has been proposed as
a technique aimed at reducing the semantic gap. It works
by gathering semantic information from user interaction.
The simplest form of RF is to indicate which images in
the retrieval set are relevant. Based on this RF, the retrieval
scheme is adjusted. This process iterates until the user is
satisfied with the retrieved images or stops searching. Thus,
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by providing an image similarity measure under human
perception, RF learning can be seen as a form of supervised
learning that finds relations between high-level semantic
interpretations and low-level visual properties. Hence, it
attempts to reduce the semantic gap by tailoring the retrie-
val strategy to the narrow image domain the user has in
mind. Two main RF learning strategies have been pro-
posed: query modification and distance re-weighting.
Query modification changes the representation of the query
in a form that is closer to the semantic intent of the user. In
particular, query shifting involves moving the query feature
vector towards the region of the feature space containing
relevant images. This is based on the assumption that rele-
vant images have similar feature vectors and cluster
together in feature space. Distance re-weighting changes
the calculation of image-to-image similarity to strengthen
the contribution of relevant image components in regard
to the current query.

In [42], a probabilistic feature relevance learning algo-
rithm that automatically captures feature relevance based
on RF is presented. It computes flexible retrieval metrics
for producing neighborhoods that are elongated along less
relevant feature dimensions and constricted along most
influential ones. In [20], we propose a probabilistic region
relevance learning algorithm that can automatically (i.e.,
without asking the user) make informed estimates for the
importance of each region in an image. Instead of updating
individual weights, it is also possible to select from a pre-
defined set of similarity measures. In [29], a Bayesian
framework is used to associate each image with a probabil-
ity that it corresponds to the user’s semantic intent. The
probability is updated based on the RF at each iteration.
A re-ranking method to improve web image retrieval by
reordering the images retrieved from an image search
engine is proposed in [32]. The re-ranking process is based
on a relevance model, which is a probabilistic model that
evaluates the relevance of the HTML document linking
to the image, and assigns a probability of relevance.

Recently, support vector machine (SVM) learning has
been applied to CBIR systems to significantly improve
retrieval performance. Basically, the probability density
of relevant images can be estimated by using one-class
SVMs. For instance, in [6], a one-class SVM is used to esti-
mate the distribution of target images by fitting a tight
hypersphere in a non-linearly transformed feature space.
In [59], the problem is regarded as a two-class classification
task and a maximum margin hyperplane in a non-linearly
transformed feature space is used to separate relevant
and non-relevant images. In [19], we present a short-term
learning approach based on generalized SVMs that can
be used with region-based (i.e., variable-length) image rep-
resentations. Because a generalized SVM does not place
any restrictions on the kernel, any region-based similarity
measure (i.e., not necessarily an inner product one) can
be used.

Most current retrieval systems that exploit RF are based
on a short-term-learning-only approach. That is, the sys-
tem refines the retrieval strategy by using RF supplied by
the current user only and the learning process starts from
ground up for each new query. Some approaches attempt
long-term learning (i.e., RF from past queries are used to
improve the retrieval performance of the current query).
The results from those approaches show a tremendous ben-
efit in the initial and first iteration of retrieval. Long-term
learning thus offers a great potential for reducing the
amount of user interaction by decreasing the number of
iterations needed to satisfy a query. The method proposed
in [31] was one of the first attempts to explicitly memorize
learned knowledge to improve retrieval performance. A
correlation network is used to accumulate semantic rele-
vance between image clusters learned from RF. In [27,26]
latent semantic analysis is used to provide a generalization
of past experience. Both [7] and [58] take the approach of
complete memorization of prior history. We have devel-
oped several techniques [18,21,22,17] for performing long-
term learning. Those techniques use SVMs in combination
with RF for learning the class distributions of users’
semantic intents from retrieval experience. The geometric
view of one-class SVMs allows a straightforward interpre-
tation of the density of past interaction in a local area of
the feature space and thus allows the decision of exploiting
past information only if enough past exploration of the
local area has occurred.

Many of these techniques can also be applied to video
retrieval. A general framework for video retrieval consists
of building a supervised classifier from sample training
shots and using the classifier to find more relevant shots
whose features match those of the training shots. Several
important issues, such as the fusion of multimodality infor-
mation [57], how to use active learning for iteratively build-
ing better semantic classifiers by selecting the most
informative shots from user feedbacks [4], or how to use
the temporal information of video data [10] have been
explored.

Both selecting the features and adapting the distance
metric continue to be active areas of research. The pur-
pose of this research is to investigate what we believe
is the logical continuation of the CBIR idea of searching
visual content directly. Because ultimately, the entire
visual content of an image is encoded into its raw data
(i.e., the raw pixel values), in theory, it should be possi-
ble to determine image similarity based on the raw data
alone. That is, everything that we need to know regard-
ing the visual content of the image is in the raw data
itself. Humans are very good at looking at an image
(i.e., the raw data) and extracting all the important fea-
tures from it. Thus, all the important features are ‘‘hid-
den’’ in the raw data somewhere. The problem of
feature extraction is just that we do not entirely know
yet what they are and how (we, humans) ‘‘find’’ them.
Thus, instead of attempting to determine image similarity
based on a small set of (probably incomplete) set of fea-
tures, why not have a similarity measure that is based on
the raw data itself (since everything is in the raw data).
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We attempt to bypass the feature selection step (and the
distance metric in the corresponding feature space) by tak-
ing the normalized information distance (NID) [34]
approach. The NID approach is based on the notion of
Kolmogorov complexity [30,36]. The information distance
between a and b is the complexity of the transformations of
a into b and b into a. The information distance is normal-
ized by the individual complexities of a and b. In theory,
the complexity of a is measured by the length of the short-
est program that can compute a from scratch. The com-
plexity of the transformation of a into b is the length of
the shortest program that can compute b given a as an aux-
iliary input. Kolmogorov complexity is not computable,
but it has been used as the foundation for the minimum
description length (MDL) principle [9,45] and the mini-
mum message length (MML) principle [53]. We investigate
the application of NID to image dissimilarity measurement
by approximating the complexity of an image by the size of
the compressed image. In [34], NID was successfully
applied to the problems of determining whole mitochon-
drial genome phylogenies and classifying natural languages
when using a compression-based approximation of com-
plexity. It has also been shown to be applicable to chain let-
ters [2]. This article is a revised and expanded version of
our initial investigation into this idea, put forth in [23].
The main advantage of the NID approach is its simplicity.
The objective of this research is to obtain some preliminary
evidence as to whether a compression-based approximation
to the NID can actually create a statistically significant
image similarity measure and to compare its performance
against that of more traditional feature-based methods.

The rest of this article is organized as follows. Section 2
gives a brief introduction to the NID as presented in [34].
In Section 3, we explain how we approximate Kolmogorov
complexities of images and apply the NID to CBIR. Exper-
imental results with real data sets are presented in Section
4. Finally, concluding remarks are given in Section 5.

2. The normalized information distance

The NID presented in [34] is based on the incomputable
notion of Kolmogorov complexity. The Kolmogorov com-
plexity of a string x, KðxÞ, is defined as the length of the
shortest effective binary description of x. Broadly speaking,
KðxÞ may be thought of as the length of the shortest pro-
gram that, when run with no input, outputs x. It has been
shown that, although there are many universal Turing
machines (and thus many possible shortest programs),
the corresponding complexities differ by at most an addi-
tive constant [15]. Thus, KðxÞ is the smallest amount of
information that is needed by an algorithm to generate x.
Let x� be the smallest program that generates x. Then,
KðxÞ ¼ jx�j. Similarly, the conditional Kolmogorov com-
plexity of x relative to another string y, KðxjyÞ, is the length
of the shortest program that, when run with input y, out-
puts x. Also, Kðx; yÞ is the length of the smallest program
that generates x and y along with a description of how to
tell them apart. The theory and development of the notion
of Kolmogorov complexity are described in detail in [36].
The information in y about x is defined as [30,34]

Iðx : yÞ ¼ KðxÞ � Kðxjy�Þ

A result from [14] shows that, up to additive constants,
Iðx : yÞ ¼ Iðy : xÞ. Thus [34],

KðxÞ þ Kðyjx�Þ ¼ KðyÞ þ Kðxjy�Þ ð1Þ

The information distance Eðx; yÞ is defined as the length of a
smallest program that generates x from y and y from x [34].
A result from [1] indicates that, up to an additive logarith-
mic term,

Eðx; yÞ ¼ maxfKðyjxÞ;KðxjyÞg ð2Þ

Because it is not normalized, Eq. (2) may not be an appro-
priate distance measure. For instance, according to Eq. (2),
the distance between two very long strings that differ only
in a few positions would be the same as the distance be-
tween two short strings that differ by the same amount.
In [34], the NID dðx; yÞ is proposed

dðx; yÞ ¼ maxfKðxjy�Þ;Kðyjx�Þg
maxfKðxÞ;KðyÞg ð3Þ

The function dðx; yÞ is a normalized information distance
(i.e., it is a distance metric, takes values in [0,1], and satis-
fies the normalization condition). It is also universal be-
cause it includes every computable type of similarity in
the sense that, whenever two objects are similar in normal-
ized information in some computable sense, then they are
at least that similar in dðx; yÞ sense [34]. For proofs and
more details, refer to [34].

3. Applying the NID to CBIR

Computational complexity is related to the length of the
shortest program that is able to perform some computa-
tion. For example, as previously discussed, the Kolmogo-
rov complexity of a string x, KðxÞ, may be thought of as
the length of the shortest program that, when run with
no input, outputs x. For example, if x consists of 5 billion
1’s, although very long, can be generated by a very short
program (e.g., a single loop that iterates 5 billion times
and outputs a 1 on each iteration). On the other hand, if
x is the text of Hamlet, although much shorter than 5 bil-
lion characters, cannot be generated by any simple pro-
gram and hence is much more complex. Thus, according
to the Kolmogorov definition of complexity, intuitively,
random strings of symbols have the greatest complexity
(Hamlet can be put through a text compression algorithm
that takes advantage of repeated words and grammatical
structure). A raw image is a string containing byte streams
describing color information. Thus, similarly and accord-
ing to the Kolmogorov definition of complexity, the fewer
the number of regularities found in the image, the more
complex the image is. Thus, images with small color varia-
tion and/or with large areas of one color are far less com-
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plex than those with large color variations and/or no such
homogeneous regions (see Fig. 1).

Let x and y be two raw images (i.e., strings containing
byte streams describing color information). In order to be
able to use Eq. (3) for determining distance between x

and y, we need to estimate KðxÞ, KðyÞ and their conditional
complexities KðxjyÞ, KðyjxÞ. For the conditional complexi-
ties, by (1), KðxjyÞ ¼ Kðx; yÞ � KðyÞ (up to an additive con-
stant) [34]. Also, Kðx; yÞ ¼ KðxyÞ (up to additive
logarithmic precision) [34].

Kolmogorov complexity is not computable but we can
try to approximate it by using compression. The idea
behind image compression is generally the same regardless
of what compression method is used. That is, whenever
there is a group of neighboring pixels of the same color,
it is more efficient to use a single description for the entire
region. Furthermore, with lossy compression, a group of
pixels that have very similar colors can be replaced with
their average color, which results in a much more compact
description at the expense of slight image distortions. What
is different among compression algorithms is how the
regions that contain pixels of similar colors are found
and described. For example, some methods use wavelets
to represent the image. Thus, since compression algorithms
take advantage of redundancy (i.e., spatial, color coher-
ence) in an image to shrink the representation, they
approximate the spirit of Kolmogorov complexity. That
is, if x is a more complex image than y, the size of the com-
pressed x will generally be larger than that of y. Thus, this
corresponds to the intuition that KðyÞ should be smaller
than KðxÞ. Thus, the size of the compressed x is used to
approximate KðxÞ, similarly for KðyÞ. We also use compres-
sion to approximate the conditional Kolmogorox complex-
ities. The compressed size of concatenation of x with y is
used to estimate KðxyÞ, similarly for KðyxÞ. We justify this
by noting that, similarly, what a compressor does in order
to code the concatenated xy sequence is to search for infor-
mation that is shared by x and y in order to reduce the
redundancy of the entire sequence. Thus, if the result is
much smaller than the sum of the individual complexities,
it means that a lot of information contained in x can be
used to code y. If this happens, we could describe x by
making references to (parts of) y and a ‘‘shorter program’’
would be needed to describe x. Thus, using Eq. (3), the dis-
tance between two raw images x and y can be defined as
Fig. 1. The (Kolmogorov) complexity of an image is proportional to the numbe
homogeneous areas in one color; (b) a more complex photographic image.
d 0ðx; yÞ ¼ maxfðjcðxyÞj � jcðyÞjÞ; ðjcðyxÞj � jcðxÞjÞg
maxfjcðxÞj; jcðyÞjg ð4Þ

where cðiÞ is the compressed version of input i and jcðiÞj is
its corresponding size. Note that jcðxÞj, jcðxyÞj are approx-
imations to KðxÞ and Kðx; yÞ, respectively.

It is common for compression algorithms to exploit simi-
larities among neighboring points. Thus, if two images con-
tain an object of interest but in different spatial locations,
simple concatenation methods (e.g., sequential or interleav-
ing of the bytes of the two images) may not be able to exploit
this (see Fig. 2). Intuitively, if the objects of interest were in
the same spatial location in the two images (e.g., if the apple
in the second image in Fig. 2 appeared also on the upper left
hand corner), we would expect the byte-interleaving method
to have better performance. Thus, for some compression
algorithms, it may be advantageous to have an interleaving
of the regions in the two images such that the objects of inter-
est (e.g., the apples) appear together. We propose the follow-
ing additional method. First, each image is partitioned into n

blocks of equal size (see Fig. 3(a)). Note that this ‘‘fixed seg-
mentation’’ avoids the need for feature extraction, which
would defeat the whole purpose of the NID approach to
image retrieval. Next, n interleavings of the resulting blocks
are generated such that every pair of blocks from the two
images appear together once (see Fig. 3(b)). Note that setting
n ¼ 1 results in a simple sequential concatenation and, the
larger the value of n, the more likely that the objects of inter-
est will appear next to each other (i.e., without any ‘‘back-
ground’’ separating them) (see Fig. 4). Ideally, all possible
combinations of the image blocks (i.e., n� n) and thus all
possible interleaving orderings would be used instead of only
n. However, for every pair of images, this would require n2

compressions (i.e., each of the n2 interleavings has to be com-
pressed). As a result, due to its computational complexity,
the proposed approach would not be practical. Thus, this
required us to compromise accuracy to achieve a reasonable
computational complexity (i.e., linear instead of quadratic)
for the similarity operation between each pair of images.
Lastly, the distance between the two images x and y is rede-
fined as

d 00ðx; yÞ ¼
min

j¼1;...;n
fmaxfðjcðxyjÞj � jcðyÞjÞ; ðjcðyxjÞj � jcðxÞjÞgg

maxfjcðxÞj; jcðyÞjg
ð5Þ
r of regularities found in the image; (a) a simple image of a logo containing



Fig. 3. Concatenation method with n ¼ 4; (a) partitioning into n blocks;
(b) resulting n concatenations.

Fig. 4. Resulting concatenations with n ¼ 9. Note that in one of the
concatenations, the objects of interest (i.e., the apples) appear almost next
to each other.

Fig. 2. In the concatenation (either sequential or byte-interleaving) of the
two images, the objects of interest (i.e., the apples) appear far from each
other. Sample images taken from the SIVAL benchmark (http://
www.cs.wustl.edu/~sg/accio/SIVAL.html).
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where cðiÞ and jcðiÞj are as before and xyj, yxj refer to the
jth xy, yx concatenations respectively.

4. Experimental results

Consider a database consisting of a set of images D. Let
x be a query image and A � D be the subset of images in D
that are relevant to x. After processing x, the image retrie-
val method generates R � D as the retrieval set. Then,
Rþ ¼ R \A is the set of relevant images to x that appear
in R. Users want the database images to be ranked accord-
ing to their relevance to x and then be presented with only
the k most relevant images so that jRj ¼ k < jDj. Thus,
images are ranked by their distance to the query image
and, in order to account for the quality of image rankings,
precision at a cut-off point (e.g., k) is commonly used.
Thus, the performance of the image retrieval method is
commonly measured by precision, which quantifies the abil-
ity to retrieve only relevant images and is defined as
precision :¼ jRþjjRj . For example, if k ¼ 20 and the top 20
ranked images are all relevant to x, then R contains only
relevant images and thus precision is 1. On the other hand,
if k ¼ 40 and only the first top 20 images are all relevant to
x, then half of the images in R are non-relevant to x and
thus precision is only 0.5.

The objective of our experiments was to obtain evidence
as to whether a compression-based approximation to the
NID actually creates a statistically significant image simi-
larity measurement. Therefore, we tested its performance
against an uninformed method that used uniform random
retrieval to select the images in R. We also compared the
performance of the NID approach against that of several
feature-based methods. The following four real-world data
sets were used for evaluation:

(1) Texture. The Texture data set, obtained from MIT
Media Lab [44]. There are 40 different texture images
that are manually classified into 15 classes. Each of
those images is then cut into 16 non-overlapping
images of size 128� 128. Thus, there are 640 images
in the database. Sample images are shown in Fig. 5.

(2) Letter. The Letter data set, obtained from the UCI
repository of machine learning databases [38]. It con-
sists of 20,000 rectangular pixel displays of the 26
capital letters in the English alphabet. The character
images are based on 20 different fonts and each letter
within these 20 fonts is randomly distorted to pro-
duce a file of 20,000 unique stimuli. Each stimulus
is converted into 16 primitive numerical attributes
(statistical moments and edge counts) which were
then scaled to fit into a range of integer values from
0 to 15. Sample images are shown in Fig. 6.

(3) GroundTruth. The University of Washington
GroundTruth image database [61]. The images are
photographs of different regions and topics. Sample
images are shown in Fig. 7. We use the set of 675
annotated images. Each image contains multiple
annotations (i.e., keywords).

(4) IAPR-12. The benchmark database and standard
queries from technical committee 12 of IAPR [28].
The data consists of 1000 images and 30 standard
queries. Sample images from the queries can be found
in Fig. 8.

(5) Corel. A subset of 2000 labelled images from the gen-
eral purpose COREL image database. There are 20
image categories, each containing 100 pictures. Sam-
ple images are shown in Fig. 9.

The Texture and Letter data sets were used first. For this
experiment, we used d 0ðx; yÞ Eq. (4) and compression algo-
rithms from the UCL library [40], a portable lossless data
compression library written in ANSI C. The compression
algorithms included in the UCL library are block compres-

http://www.cs.wustl.edu/~sg/accio/SIVAL.html
http://www.cs.wustl.edu/~sg/accio/SIVAL.html


Fig. 5. Sample images from Texture data set.

Fig. 6. Sample images from Letter data set. First row contains images of
the letter ‘‘O’’; images on the second row are of the letter ‘‘Q’’.

Fig. 7. Sample images from GroundTruth data set.

Fig. 8. Sample query images from IAPR-12 data set; (a) query 5, (b) query
18, (c) query 25, (d) query 28.
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sors (i.e., each memory block passed to the compressor gets
compressed independently). Each block of data is com-
pressed into matches (a sliding dictionary) and runs of
non-matching literals. The algorithm exploits long matches
and long literal runs so that it produces good compression
results on highly redundant data. The image concatenation
was a sequential placement of the raw bytes of the second
image at the end of the first image. Each image was used as
a query and the precision of a retrieval set of the 20 nearest
images was measured. The results are presented in Tables 1
and 2, which show the average precision over the 640 and
20,000 queries respectively. The NID approach performed
surprisingly well and is obviously statistically different than
uniform random retrieval. It performs almost as well as
extracting a 16-dimensional feature vector (Gabor filters
in the case of Texture, statistical moments and edge counts
in the case of Letter) from each image and using Euclidean
distance to select the points closest to the query. Since the
texture images contain the repeating patterns of the texture
and the letter images are very simple black-and-white
images, they are probably the best case situation for
approximation based on compression.

The GroundTruth data set was used next. For this exper-
iment, we used d 0ðx; yÞ Eq. (4), d 00ðx; yÞ Eq. (5), and gzip [25]
as the compressor. The deflation algorithm used by gzip is
a variation of LZ77 [60]. It finds repeated strings in the
input data. The second occurrence of a string is replaced
by a pointer to the previous string, in the form of a (dis-
tance, length) pair. When a string does not occur anywhere



Fig. 9. Sample images from Corel data set.
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in the previous 32K bytes, it is emitted as a sequence of lit-
eral bytes. Literals or match lengths are compressed with
one Huffman tree, and match distances are compressed
with another tree. The trees are stored in a compact form
at the start of each block [25]. In the case of d 0ðx; yÞ Eq.
(4), the image concatenation was a sequential placement
of the raw bytes of the second image at the end of the first
image and, for d 00ðx; yÞ Eq. (5), n ¼ 9. Each image was used
as a query and the precision of a retrieval set of the 20 near-
est images was measured. We define y as being relevant to x

when x and y share at least one common annotation. The
results are presented in Table 3, which shows the average
precision over the 675 queries. The NID approach with
Table 1
Texture data set performance

Random NID Gabor filters

Precision at 20 images 0.079 0.80 0.81

Table 2
Letter data set performance

Random NID Moments, edge counts

Precision at 20 images 0.038 0.82 0.849

Table 3
GroundTruth data set performance

Random NID Eq. (4) NID Eq. (5)

Precision at 20 images 0.414 0.578 0.602
d 0ðx; yÞ Eq. (4) had a precision of 0.578 and a precision
of 0.602 with d 00ðx; yÞ Eq. (5). The random method has a
precision of 0.414. To determine if the NID approach with
d 0ðx; yÞ Eq. (4) is statistically different from the random
method, McNemar’s test [56] was used. In McNemar’s test
for two classifiers, A and B, the z statistic is

z ¼ jn01 � n10j � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n10 þ n01

p

where n01 is the number of samples misclassified by A but
not by B and n10 is the number of samples misclassified
by B but not by A. In this case, n01 ¼ 2358 and
n10 ¼ 4572 out of a total of 13,500 classified samples (20
for each of the 675 images) and z ¼ 26:58. The quantity
z2 is distributed approximately as v2 with one degree of
freedom. Thus we can reject the null hypothesis that the
classifiers have the same error rate and assert that the
NID is expressing a statistically significant similarity
measure.

The IAPR-12 data set was used next. We used the que-
ries that contained two images (queries 5, 18, 20, 21, 25, 26,
and 28). Each image was used as a query image and the
rank of the other image was determined by sorting the
images based on distance from the query. For this experi-
ment, we used d 0ðx; yÞ Eq. (4) and compression algorithms
from the UCL library [40]. Two methods of image concat-
enation were tried. In addition to the previous sequential
concatenation, an interleaving of the two images was done
by alternating the bytes from the two images. The sequen-
tial concatenation performed well on query 18 (Fig. 8(b))
with the desired retrieval image ranking first, but on query
25 (Fig. 8(c)) the desired image had rank 926. Over all of
the queries, the average rank of the desired image was
501 and not different than random retrieval (which would
average 499.5). Switching the concatenation to an inter-
leaving approach improved the average rank to 395 but
actually pushed the worst result from query 25 out to rank
981. Though the approach worked very well on some of the
individual queries, further investigation of the IAPR data
set is needed due to the difficulty of some the queries.

The Corel data set was used next. For this experiment,
we used d 0ðx; yÞ Eq. (4) and JPEG compression [43]. JPEG
is a lossy compression algorithm that uses transform cod-
ing. First, the image is subdivided into blocks of 8� 8 pix-
els. Then, a conversion to the frequency domain is
performed by applying a two-dimensional discrete cosine
transform (DCT) to each block. The results of psychophys-
ical experiments suggest that the human eye is not so sen-
sitive to high frequency brightness variation. Thus, the
amount of information contained in the high frequency
components can be greatly reduced without humans being
able to perceive any significant difference in the image.
Therefore, the next step is a quantization step in which
each component in the frequency domain is divided by a
constant for that component and then rounded to the near-
est integer. This is the main lossy step in the algorithm. The
results of this quantization are then encoded by using a
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Fig. 10. JPEG compression.

Table 4
Corel data set performance

Random NID UFM IRM

Precision at 20 images 0.05 0.331 0.466 0.275
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special form of lossless data compression known as entropy
encoding. This involves arranging the quantized coeffi-
cients in a zig-zag order that groups similar frequencies
together and then using Huffman coding [43]. Fig. 10 shows
the main steps of JPEG compression.

The image concatenation was a sequential placement of
the quantized coefficients (resulting from the quantization
step) of the second image at the end of the quantized coef-
ficients of the first image. Then, the entropy encoding step
was performed on the concatenated coefficients. Note that,
in the quantization step, frequency components from both
images that are close enough will be rounded to the same
nearest integer (i.e., to the same quantized coefficient).
Thus, the entropy encoder step will exploit not only redun-
dancies between the two images but also implicitly, similar-
ities between them. Each image was used as a query and the
precision of a retrieval set of twenty nearest images was
measured. The results are presented in Table 4, which
shows the average precision over the 2000 queries. Once
again, the NID performed surprisingly well and is obvi-
ously statistically different than the random approach. It
performs better than IRM [33] and not much worse than
UFM [5], both described in 1.
5. Summary and future research

Based on the observation that the entire visual content
of an image is encoded into its raw data, we investigated
the possibility of using the NID [34] to bypass the feature
selection step (and the distance metric in the corresponding
feature space). The NID is a universal dissimilarity mea-
sure and, although the measure is not computable and
not even effectively approximable, it does provide insight
into what we would want to do in the ideal case. This
insight can be used to guide our attempts at simulating
the NID measure at various levels of precision. In this arti-
cle, we determined that even simple compression-based
approximations to Kolmogorov complexity resulted in sta-
tistically significant dissimilarity measures for images when
the NID approach was followed. Furthermore, this method
performed surprisingly well when compared against some
feature-based approaches. This is an encouraging result
that indicates that other attempts at simulating NID may
yield good results. Another area where it may be useful
to try the NID approach is in the matching of variable-
length feature vectors. The NID approach may create a
very practical method that goes beyond the individual
region matching but does not require the expense of deter-
mining the higher level relationships among the regions.
Another area of future research is the exploration of the
NID approach as a feature-independent method of struc-
turing an image data set.

References
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