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Abstract. Relevance Feedback attempts to reduce the semantic gap between a
user’s perception of similarity and a feature-based representation of an image by
asking the user to provide feedbad regarding the relevance or non-relevance of
the retrieved images. This is intra-query learning. However, in most current
systems, all prior experience is lost whenever a user generates a new query thus
inter-query information is not used. In this paper, we focus on the posshility of
incorporating prior experience (obtained from the historical interaction of users
with the system) to improve the retrieval performance on future queries. We
propose learning one-class SVMs from retrieval experience to represent the set
memberships of users query concepts. Using a fuzzy classficaion approad, this
historicd knowledge is then incorporated into future queries to improve the
retrieval performance. In order to learn the set membership of a user's query
concept, a one-class SVM maps the relevant or training images into a nonlinealy
transformed kernel-induced feature space and attempts to include most of those
images into a hyper-sphere. The use of kernels allows the one-classSVM to ded
with the non-linearity of the distribution of training imagesin an efficient manner,
while & the same time, providing good generalization. The proposed approad is
evaluated against real data sets and the results obtained confirm the effediveness
of using prior experience in improving retrieval performance.

1 Introduction

The rapid development of information technologies and the advent of the World-
Wide Web have resulted in a tremendous increase in the anount of available
multimedia information. As a result, there is a neal for effedive mechanisms to
seach large mlledions of multimedia data, especially images. In traditional image
retrieval, keywords are manually asggned to images and, for any particular query,



images with matching keywords are retrieved [12]. However, it isusually the ase
that al the information contained in an image cannot be captured by a few
keywords. Furthermore, a large amount of effort is needed to do keyword
assgnments in a large image database and, becaise different people may have
different interpretations of image cntents, there will be inconsistencies [12].

In order to aleviate some of these problems, Content-Based Image Retrieval
(CBIR) was proposed. Some ealy systemsinclude [9, 5]. A CBIR system extrads
some feaures (such as color, shape, and texture) from an image. The fedures are
then the components of a feaure vector which makes the image @rrespond to a
point in a feaure space. In order to determine doseness between two images, a
similarity measure is used to caculate the distance between their corresponding
feaure vedors. However, becaise of the gap between high level concepts and low
level feaures and the subjectivity of human perception, the performance of CBIR
systemsis not satisfactory [12].

Relevance feedback attempts to overcome these problems by gathering
semantic information from user interadion. In order to lean a user's query
concept, the user labels each image returned in the previous query round as
“relevant” or “not relevant”. Based on the feedbadk, the next set of images is
retrieved to the user for labeling. This process iterates until the user is stisfied
with the retrieved images or stops aching. Many approaches for improving the
performance of relevance feedbadk have been proposed [11, 13]. Recently,
Support Vector Madiines (SVM) have been applied to CBIR systems with
relevance feedback to significantly improve retrieval performance [3]. However,
in most current systems, all prior experience based on past queries is lost
whenever a user generates a new query. That is, the system is adapting to the
current user without using any long-term, inter-query learning.

A few approaches [16, 8, 6] attempt inter-query leaning. That is, relevance
feedback of past queries are used to improve the retrieval for a aurrent query. Both
[16] and [8] take the gproach of complete memorization of prior history. Then
the correlation between past image labeling is merged with low-level features to
rank images for retrieval. In [16] the extra inter-query information is efficiently
encoded as virtual fedures. In [6] Latent Semantic Analysiswas used to provide a
generalization of past experience. Theinitial results from the three gproaches for
inter-query learning show a tremendous benefit in the initial and first iteration of
retrieval. Inter-query learning thus offers agrea potential for reducing the anount
of user interaction by reducing the number of interactions needed to satisfy a
query.

In this paper, we propose using one-class SVYMs to capture users query
concepts and utilize them as previous experience to be used in future queries. In
order to learn the set membership of a user’'s query concept, a one-class SVM
maps the relevant or training images into a nonlinealy transformed kernel-
induced feaure space ad performs risk minimization by attempting to include
most of those images into a hyper-sphere of minimum size. The use of kernels
alows the one-class SVM to deal with the non-linearity of the distribution of
training images in an efficient manner, while & the same time, providing good
generalization. In addition, the geometric view of one-class SVM alows a
straightforward interpretation of the density of past interadion in alocal areaof



the feature space and thus allows the dedsion of exploiting past information only
if enough past exploration of the locd areahas occurred.

The rest of this paper is organized as follows. Section 2 gives a brief
introduction to SVMs and describes one-class SVMs in detail. A description of
our proposed approach for improving retrieval performance by using SVMs to
cgpture historicd information and fuzzy classification to incorporate it into the
relevance feedbadk method is presented in Sedion 3. In Sedion 4, we report
experimental results which confirm the effedivenessof our approach. Concluding
remarks are presented in Section 5.

2 Support Vector Machines

A Support Vedor Machine (SVM) is a system for training linear leaning
madines in a kernd-induced feaure space efficiently while & the same time,
respecting the insights provided by generalization theory and exploiting
optimization theory [4]. The objedive of support vedor classficationisto create a
computationally efficient method of leaning “good” separating hyperplanesin a
high dimensional feature space where “good” corresponds to optimizing the
generalization bounds given by generalization theory [4].

Suppose we are given training data{x,, X, ...,X,} that are vectorsin some space
X 0 0°andtheir corresponding classlabels{y,, y,, ..., y.} wherey, 0 {-1, 1}. The
task of aleaning macdine would beto lean the mapping X, - Y. Themachineis
defined by a set of possble mappingsx - f(x, a), where the functions f(x, a) are
labeled by the ajustable parameters a [2]. If there are no restrictions on the
family of functions f(x, a) from which we choose our trained machine f, even
though f may have zro error on the training data, it may not generalize well on
unseen data. This problem is known as overfitting and it drove the initia
development of SVMs [2]. Statistical learning theory, or VC (Vapnik-
Chervonenkis) theory, shows that the best generaization performance ca be
obtained when the “capadty” of the leaning machine is restricted to one that is
suitable to the anount of available training data [2]. Suppose we have a dassof
separating hyperplanes (x-w) + b =0, wherew 00 0" and b O O, corresponding to
dedsion functions f(x) = sign((x-w) + b). It can be shown that the optimal
hyperplane (i.e., the one that minimizes the generalization error or the bound on
the actual risk) corresponds to the one with maximal margin of separation between
the two classes [2]. The optima hyperplane has the smallest “capadty” (also
known as the lowest “VC dimension”). In order to find the optimal separating
hyperplanes, a constrained quadratic optimization problem is solved. The solution
has an expansion w = ¥, . Those points for which o, > 0 are alled “support
vedors’ and lie on one of the separating hyperplanes. All other points have a, = 0
thus the support vedors are the aitical elements of the training set [2]. The final
dedsion function isof theform f(x) = sign(3, o,(x-x,) + b).

In order to generalize to the case where the dedsion function is not linearly
separable, SVMsfirst map the datainto some other (possbly infinite dimensional)



feaure space F using a mapping @: 0" - F. Because both the quadratic
optimization problem and the final decision function depend on the data through
dot productsin F (i.e, on functions of the form ®(x) * ®(x)), if we are given a
“kernel function” K such that K(x, x) = ®(x) ¢ ®(x), we wuld just use K
without even having to know what @ is[2]. Thisisknown as the “kernel trick”
and it allows SVMs to implicitly project the origina training data to a higher
dimensional feaure space

2.1 One-Class SVM

In aone-classclassfication problem, data from only one of the classs (the target
clasg isavailable. For instance, when a user labels some images as “relevant” and
others as “non-relevant”, information about one class(i.e., the one corresponding
to the user’ s query concept) isgiven by the “relevant” images. However, the “non-
relevant” images do not provide any class information since they can belong to
any class Thus, in one-classclassfication, the task is to creae aboundary around
the target class sich that most of the target data is included while, at the same
time, minimizing the risk of aacepting outliers (i.e., data that does not belong to
the target clas9 [15].

The strategy that we will follow to cgpture a user’s query concept (i.e., the
target clasg is to map the “relevant” images (i.e., the training data) to a higher
dimensional feature space and then try to include most of those images into a
hyper-sphere. That is, given training data {x,, x,, ...,x,} that are vedors in some
space X O 0O°, we have to find the smallest hyper-sphere (so that the risk of
including outliersis minimized) that includes most of the training data. Thus, the
task isto minimizethe following objective function (in primal form):

min R+C)Y, &

ROO, 00" aOF
such that ||[®@(x) —alf < RR+E, & =0, forOi
where R and a are the radius and center of the hyper-sphere, C gives the tradeoff
between the radius of the hyper-sphere and the number of training data that can be

included, and @: 0" - F. By setting partial derivativesto 0 in the corresponding
Lagrangian we obtain the following expresson for the center of the hyper-sphere:

a= zi ai ¢(XI)

Replacing partial derivatives into the Lagrangian and noticing that the ceter ais
defined as a linear combination of ®(x;), which allows us to use akernel, we
obtain the foll owing objedive function (in dual form):

min ) a0 K(x,X)- >, o K(x,x) suchthaaO<a<C, > o=1

ji

This is a quadratic programming problem and the optimal a’s can be obtained
using a quadratic programming method [15]. In order to determine the ranking of



an image x in the database (in terms of belonging to a particular query concept),
the following function can be used [15]:

f(x) = R - |Io(x) - alf
=R - Z. ai, K(Xi’ X]) +2 Zi q; K(Xi' X) - K(x, x)

g

where images with higher values are closer to the hyper-sphere and thus, are more
likely to belong to the same query concept.

In [3] image retrieval performance is successfully improved by using a one-
classSVM for intra-query learning. Scholkopf proposed another approach [14] in
which a largest margin hyperplane is used to separate the training data from the
origin. When the training data has unit norm thisisidentica to the approach taken
by Tax [15] (explained above). In this paper, asin [3], wewill follow the approach
developed by Tax [15].

3 Proposed Approach

Using one-class SVMs we obtain set membership knowledge (about previous
users query concepts), which can be visualized as hyper-spheresin feature space
In order to integrate this prior experience with a user’s current query, we do a
fuzzy clasdfication o the user’'s query concept. When a query is submitted, we
determine whether it falls into one of the existing one-class SYMs. Because it is
very common for an image to be ascribed into many different concepts, we exped
to have queries that fall into many hyper-spheres. One possble way of selecting
the images that will be presented to the user would be to perform a hard
clasgfication by retrieving the KNN images closest to the nearest center (i.e,
KNN images to the closest prototype). However, this purely exploitative gproach
is not a very good strategy since the query is considered not to be an outlier by
several one-classSVMs. It may as well be acribed to the concept corresponding
to any one of the other hyper-spheres. Furthermore, the query may be ascribed to a
combination of different concepts. Therefore, insteal, we use the ideas from
posshilistic cluster analysis [7] and assgn a degreeof membership to ead one of
the one-class SVMs (i.e., to each cluster) according to the degree by which the
query can be ascribed to its particular concept. A possbhilistic duster analysis
drops the probabilistic constraint that the sum of the degrees of membership of
each image to al one-class SVMs is equal to one [7]. Therefore, possbhilistic
cluster partitions are espedally useful in the classficaion of images because it is
often the case that an image cannot be assgned to any one of the existing clusters
[7].

Let's introduce some terminology. Let D = O° be the data space of d-
dimensional image vedors, C={c, c,, ..., .} bethe concept space (i.e., the set of
concepts corresponding to all existing one-classSVMs), and R={{ ¢} |c O C} be
the result space. The result of a dataanalysisisamapping : X - {c}, where X [0
DandcOC. Then, AD,R) ={u|: X - K, X# @ KOR} iscdled an analysis
space [7]. The fuzzy set of X isamapping p: X - [0,1] and the set containing all



fuzzy sets of X is denoted by F(X) = {u| i X - [0,1]}. Then, A, (D, R) = A(D,
{F(K) | K O R}) isthe fuzzy analysis space for A(D, R). A result of an analysis |t
X - F(K) is called a possibilistic cluster partition if Ok O K: Y o, H(X, k) >0,
where p(x, K) isinterpreted as the degree of membership of x O X into the cluster k
OKI[7].

The fuzzy c-means algorithm caries out a data anaysis by minimizing an
objective function. It searches for an optimal set of spheres (i.e., clusters) of d-
dimensional points in a feaure space. The clusters are represented by their
corresponding centers (i.e., by their prototypes) and Euclidean distanceis used as
the measure of distance between a point x and a prototype a [7]. In our case, the
set of clusters (in the form of one-class SVMs) is formed by the historicd
interaction of userswith the system. We use the foll owing membership function to
assgn degrees of membership to the n hyper-spheres into which a query x falls

[7]:

n

H(x, &) = 1/_21 (Ilp(x) —a|f / lle(x) —a|f) for Ci
J:

where a, isthe center of thei" hyper-sphere and ®: 0" - F. Therefore, the degree
of membership of a query into aone-classSVM is based on the relative distances
between the query and the enters of al hyper-spheresinto which it falls. Suppose
aquery x falsinto n hyper-spheres. If ¢, denotes the mncept that is embodied by
the i" hyper-sphere then the belief (or our degree of confidence) that x is
delivering concept ¢, is equal to p(x, a).

Our approach for selecting the set of images that wil | be presented to the user
(i.e, the retrieval set) is based on combining exploitation and exploration while
maximizing the number of relevant images in the retrieval set. The results of
experiments conducted in [1] for leaning users text preferences suggest that, for
simple queries (i.e.,, queries that can be acribed to one wncept), a purey
exploitative strategy delivers very good performance. However, for complex
queries (i.e., queries that can be ascribed to more than one wncept), there is a
tradeoff between faster learning of the user’s query concept and the delivery of, in
our case, more relevant images. In ather words, for a complex query, we may be
able to maximize the number of relevant images presented to the user by selecting
images that can be ascribed to the concept with the largest p(x, a) (i.e., by pure
exploitation). However, we may not be able to lean the user's query concept
unless ®me eploration is also done. The gproach that we take is to combine
exploitation and exploration while, at the same time, attempting to maximize the
number of relevant images that are presented to the user.

To fully exploit the relevance feedbad information provided by the aurrent
user, weset (X, a,,.) =W, wherea_, . isthe center of a hyper-sphere formed by
using al the feedbadk provided by the aurrent user (or the original query image
when no relevance feedbadk iterations have been performed yet) and 0 <w <1
signifies our confidencethat a_, ., captures the user’s query concept. To form the
retrieval set, sample representative images from each hyper-sphere in which the
query fallsare included. The number of representatives that a particular concept ¢
hasin the retrieval set is proportional to p(x, ). Thus, if N(c) denotes the number



of images of concept ¢, that appea in the retrieval set then N(c) < N(c) whenever
M(X, &) < U(X, a). Because aquery may fall into many hyper-spheres but only a
fixed number of imagesisto be retrieved, priority is given to hyper-spheres with
higher p(x, a) and, after the fixed number of images is readed, the remaining
hyper-spheres with smaller p(x, a) are ignored. This allows us to perform
exploitation and exploration while, at the same time, maximizing the possbility of
presenting relevant images to the user. The seach of the historicd one-class
SV Ms could be done efficiently by building an M-Treein feature space [10].

At system startup there is no historical interadion of users with the system and
thus, no prior experience. A query isthen considered to be the ceanter of its own
cluster, w = 1, and the retrieval set is formed by the same steady-state procedure
outlined above. Similarly when there is prior historical information but the query
does not fall into any hyper-sphere. The images marked as relevant by the user
during the relevance feedback iterations are used as training data and a one-class
SVM is used to learn the set membership (in the sense of a user’s query concept).
Figure 1 shows a block diagram of the system.

User submits
query image
X

Prior experience

......................... > Fuzzy <

Query concepts Classification
nformation (1-SV
A ——— {(a,, px, &), (&, X, &), ... (a,, WX, a))}
mage [
Database
Retrieval set D = {x,, X,, ...,X .}
—
User's I'ele\/ance ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
feedbadk SAVE eedback
¢ {06 D), (5,0 (x, 1)} 4
One-class SYM '
SAVE computation
i Hyper-sphere information
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More
Hyper-sphere information iterati a,,... (center of hyper-sphere)

Figure 1. System diagram

4 Experimental Results

We compare the performance of our approach against that of relevance feedbadk
methods that do not use historicd information. The response of our technique with
respect to dfferent amounts of experience (data level) and with respect to quality



(noise level) of historical information is aso investigated. The retrieva
performanceis measured by precision, which is defined as

number of relevant images retrieved
number of images retrieved

The Texture database, obtained from MIT Media Lab, consists of 640 images
of size 128x128. There are 15 classes (corresponding to different textures) and
each image is represented by a 16-dimensional feature vedor. To determine the
free parameters, aten-fold crossvalidation was performed. Our approach was then
evaluated with dfferent amounts of experience (data level) using a Gaussan
kernel with width s = 0.1, and a misclassficaion penalty C = 1/(p*n), wheren is
the number of training images, with p = 0.001. The weight for exploration of
historicd information is (1-w), where w = 0.25. The number of images in the
retrieval set k = 20. Figure 2a shows the predsion of the initial retrieva (i.e., with
no relevance feedback iterations) with resped to different data levels. The values
reported are the average of the ten tests. The level of data is the number of hyper-
spheres relative to the number of images in the database. We can observe that,
with low data levels (lessthan 1/3), precision is lessthan that obtained by simply
retrieving the KNN images in input or feaure space which is the gproad to
credetheinitial retrieval set taken by relevance feedback methods that do not use
historicd information.

In order to avoid the initial deaease in performance we could adaptively
change the value of the parameter w so that at the beginning, when there is little
historicd information, w is large and, as experience acamulates, w beames
increasingly smaller (i.e,, more exploration is done). Thus by doing more
exploitation at the beginning we would avoid the initial drop in performance.
Nevertheless with the increasing experience, the precision becomes higher and,
with significant datalevels, thereis alarge gain in performance

In order to investigate the robustness of our approach with resped to poor
historicd information, simulated noise was added. Figure 2b shows the predsion
of theinitia retrieval at different amounts of noise. The percentage of noiseisthe
probability that a users' feedback for ead image is flipped (i.e., the probability
that an image marked as“relevant” by the user will be marked “non-relevant”, and
vice versd). We can dbserve that, with reasonable amounts of noise, data level is
the dominating factor on the performance of our approach and quality of historicd
information has a small effect.

The Segmentation database, which contains 2310 outdoor images, was taken
from the UCI repository at http://www.ics.uci.edu/~mlearn/ML Repository.html.
There are 7 classes (ead with an equal number of instances) and a 19-dimensional
feaure vector is used to represent each image. A one-fold crossvalidation was
conducted to determine the free parameters. Figure 2c shows the precision of the
initia retrieval at different datalevelswith s=25, p=0.001, w = 0.25, and k = 20.
Similarly, we can observe that with significant data levels (more than 2/2 in this
case), our approach performs better than relevance feedback methods that do not
use historical information. From Figure 2d we can dbserve that our method
outperforms an approach based on using aone-classSVM for intra-query learning
only (i.e., with datalevel 0). These results support the efficag/ of our method.

precision =
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Figure 2. Initial Retrieval Set: (a),(c) Precision vs DataLevel, (b) Precision vs
Noise Percentage, (d) Predsion vs Iteration of Relevance Feedback

5 Conclusions

This paper presented an approac for incorporating historicd information into a
relevance fealback system to improve image retrieval performance. By training
one-class SVMs with users feedbadk, we @n lean users query concepts and
accumulate retrieval experience. Using afuzzy classification approach we exploit
both current and historica information to improve retrieval performance. Initia
investigation suggests that our approach improves retrieval in the initial set where
a traditiona intra-query approach requires an iteration of relevance feedback to
provide improvement. Therefore, our method reduces user interadion by reducing
the number of iterations nealed to satisfy aquery. Furthermore, it isrobust to poor
historicd information. Our future research will focus on methods for combining or
merging hyper-spheres (i.e., users concepts). This may be desirable when the



amount of historicd information is very large. Also, we will investigate some
systematic scheme for adaptively changing w so that the anount of exploration
done is proportional to the anount of experience
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