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Abstract. Relevance Feedback attempts to reduce the semantic gap between a 
user’s perception of similarity and a feature-based representation of an image by 
asking the user to provide feedback regarding the relevance or non-relevance of 
the retrieved images. This is intra-query learning. However, in most current 
systems, all prior experience is lost whenever a user generates a new query thus 
inter-query information is not used. In this paper, we focus on the possibility of 
incorporating prior experience (obtained from the historical interaction of users 
with the system) to improve the retrieval performance on future queries. We 
propose learning one-class SVMs from retrieval experience to represent the set 
memberships of users’ query concepts. Using a fuzzy classification approach, this 
historical knowledge is then incorporated into future queries to improve the 
retrieval performance. In order to learn the set membership of a user’ s query 
concept, a one-class SVM maps the relevant or training images into a nonlinearly 
transformed kernel-induced feature space and attempts to include most of those 
images into a hyper-sphere. The use of kernels allows the one-class SVM to deal 
with the non-linearity of the distribution of training images in an efficient manner, 
while at the same time, providing good generalization. The proposed approach is 
evaluated against real data sets and the results obtained confirm the effectiveness 
of using prior experience in improving retrieval performance. 

1 Introduction 

The rapid development of information technologies and the advent of the World-
Wide Web have resulted in a tremendous increase in the amount of available 
multimedia information. As a result, there is a need for effective mechanisms to 
search large collections of multimedia data, especially images. In traditional image 
retrieval, keywords are manually assigned to images and, for any particular query, 



images with matching keywords are retrieved [12]. However, it is usually the case 
that all the information contained in an image cannot be captured by a few 
keywords. Furthermore, a large amount of effort is needed to do keyword 
assignments in a large image database and, because different people may have 
different interpretations of image contents, there will be inconsistencies [12]. 

In order to all eviate some of these problems, Content-Based Image Retrieval 
(CBIR) was proposed. Some early systems include [9, 5]. A CBIR system extracts 
some features (such as color, shape, and texture) from an image. The features are 
then the components of a feature vector which makes the image correspond to a 
point in a feature space. In order to determine closeness between two images, a 
similarity measure is used to calculate the distance between their corresponding 
feature vectors. However, because of the gap between high level concepts and low 
level features and the subjectivity of human perception, the performance of CBIR 
systems is not satisfactory [12].  

Relevance feedback attempts to overcome these problems by gathering 
semantic information from user interaction. In order to learn a user’s query 
concept, the user labels each image returned in the previous query round as 
“ relevant” or “not relevant” . Based on the feedback, the next set of images is 
retrieved to the user for labeling. This process iterates until the user is satisfied 
with the retrieved images or stops searching. Many approaches for improving the 
performance of relevance feedback have been proposed [11, 13]. Recently, 
Support Vector Machines (SVM) have been applied to CBIR systems with 
relevance feedback to significantly improve retrieval performance [3]. However, 
in most current systems, all prior experience based on past queries is lost 
whenever a user generates a new query. That is, the system is adapting to the 
current user without using any long-term, inter-query learning.  

A few approaches [16, 8, 6] attempt inter-query learning. That is, relevance 
feedback of past queries are used to improve the retrieval for a current query. Both 
[16] and [8] take the approach of complete memorization of prior history. Then 
the correlation between past image labeling is merged with low-level features to 
rank images for retrieval. In [16] the extra inter-query information is efficiently 
encoded as virtual features. In [6] Latent Semantic Analysis was used to provide a 
generalization of past experience. The initial results from the three approaches for 
inter-query learning show a tremendous benefit in the initial and first iteration of 
retrieval. Inter-query learning thus offers a great potential for reducing the amount 
of user interaction by reducing the number of interactions needed to satisfy a 
query. 

In this paper, we propose using one-class SVMs to capture users’ query 
concepts and utilize them as previous experience to be used in future queries. In 
order to learn the set membership of a user’s query concept, a one-class SVM 
maps the relevant or training images into a nonli nearly transformed kernel-
induced feature space and performs risk minimization by attempting to include 
most of those images into a hyper-sphere of minimum size. The use of kernels 
allows the one-class SVM to deal with the non-linearity of the distribution of 
training images in an efficient manner, while at the same time, providing good 
generalization. In addition, the geometric view of one-class SVM allows a 
straightforward interpretation of the density of past interaction in a local area of 



the feature space and thus allows the decision of exploiting past information only 
if enough past exploration of the local area has occurred. 

The rest of this paper is organized as follows. Section 2 gives a brief 
introduction to SVMs and describes one-class SVMs in detail. A description of 
our proposed approach for improving retrieval performance by using SVMs to 
capture historical information and fuzzy classification to incorporate it into the 
relevance feedback method is presented in Section 3. In Section 4, we report 
experimental results which confirm the effectiveness of our approach. Concluding 
remarks are presented in Section 5. 

2 Support Vector Machines 

A Support Vector Machine (SVM) is a system for training linear learning 
machines in a kernel-induced feature space efficiently while at the same time, 
respecting the insights provided by generalization theory and exploiting 
optimization theory [4]. The objective of support vector classification is to create a 
computationally efficient method of learning “good” separating hyperplanes in a 
high dimensional feature space, where “good” corresponds to optimizing the 
generalization bounds given by generalization theory [4]. 

Suppose we are given training data { x1, x2, …,xn} that are vectors in some space 
X ∈ ℜd and their corresponding class labels { y1, y2, …, yn} where yi ∈ { -1, 1} . The 
task of a learning machine would be to learn the mapping  xi →  yi. The machine is 
defined by a set of possible mappings x → ƒ(x, α), where the functions ƒ(x, α) are 
labeled by the adjustable parameters α [2]. If there are no restrictions on the 
family of functions ƒ(x, α) from which we choose our trained machine ƒ, even 
though ƒ may have zero error on the training data, it may not generalize well on 
unseen data. This problem is known as overfitting and it drove the initial 
development of SVMs [2]. Statistical learning theory, or VC (Vapnik-
Chervonenkis) theory, shows that the best generalization performance can be 
obtained when the “capacity” of the learning machine is restricted to one that is 
suitable to the amount of available training data [2]. Suppose we have a class of 
separating hyperplanes (x·w) + b = 0, where w ∈ ℜn and b ∈ ℜ, corresponding to 
decision functions ƒ(x) = sign((x·w) + b). It can be shown that the optimal 
hyperplane (i.e., the one that minimizes the generalization error or the bound on 
the actual risk) corresponds to the one with maximal margin of separation between 
the two classes [2]. The optimal hyperplane has the smallest “capacity” (also 
known as the lowest “VC dimension”). In order to find the optimal separating 
hyperplanes, a constrained quadratic optimization problem is solved. The solution 
has an expansion w = ∑i αixi. Those points for which αi > 0 are called “support 
vectors” and lie on one of the separating hyperplanes. All other points have αi = 0 
thus the support vectors are the critical elements of the training set [2]. The final 
decision function is of the form  ƒ(x) = sign(∑i αi(x·xi) + b). 

In order to generalize to the case where the decision function is not linearly 
separable, SVMs first map the data into some other (possibly infinite dimensional) 



feature space F using a mapping  Φ: ℜn → F.  Because both the quadratic 
optimization problem and the final decision function depend on the data through 
dot products in F (i.e, on functions of the form  Φ(xi) • Φ(xj)), if we are given a 
“kernel function” Κ such that Κ(xi, xj) =  Φ(xi) • Φ(xj), we could just use Κ 
without even having to know what  Φ is [2].  This is known as the “kernel trick” 
and it all ows SVMs to implicitly project the original training data to a higher 
dimensional feature space.  

2.1 One-Class SVM 

 In a one-class classification problem, data from only one of the classes (the target 
class) is available. For instance, when a user labels some images as “relevant” and 
others as “non-relevant” , information about one class (i.e., the one corresponding 
to the user’s query concept) is given by the “relevant” images. However, the “non-
relevant” images do not provide any class information since they can belong to 
any class. Thus, in one-class classification, the task is to create a boundary around 
the target class such that most of the target data is included while, at the same 
time, minimizing the risk of accepting outliers (i.e., data that does not belong to 
the target class) [15].  

The strategy that we will foll ow to capture a user’s query concept (i.e., the 
target class) is to map the “relevant” images (i.e., the training data) to a higher 
dimensional feature space and then try to include most of those images into a 
hyper-sphere. That is, given training data { x1, x2, …,xn} that are vectors in some 
space X ∈ ℜd, we have to find the smallest hyper-sphere (so that the risk of 
including outliers is minimized)  that includes most of the training data. Thus, the 
task is to minimize the following objective function (in primal form): 

 
min  R2 + C ∑i ξi 

            R∈ℜ, ξ∈ℜn, a∈F 
 

such that ||Φ(xi) – a||2  ≤  R2 + ξi,    ξi ≥ 0,  for ∀i  
 

where R and a are the radius and center of the hyper-sphere, C gives the tradeoff 
between the radius of the hyper-sphere and the number of training data that can be 
included, and  Φ: ℜn → F.  By setting partial derivatives to 0 in the corresponding 
Lagrangian we obtain the following expression for the center of the hyper-sphere: 

 
a = ∑i αi Φ(xi)  

Replacing partial derivatives into the Lagrangian and noticing that the center a is 
defined as a l inear combination of Φ(xi), which allows us to use a kernel, we 
obtain the foll owing objective function (in dual form): 
 

min    ∑i,j αiαj Κ(xi, xj) - ∑i αi Κ(xi, xi)     such that 0 ≤ αi ≤ C,    ∑i αi = 1 
 

This is a quadratic programming problem and the optimal α’ s can be obtained 
using a quadratic programming method [15]. In order to determine the ranking of 



an image x in the database (in terms of belonging to a particular query concept), 
the following function can be used [15]: 

 
                     f(x) = R2 - ||Φ(x) – a||2 

      = R2 - ∑i,j αiαj Κ(xi, xj) + 2 ∑i αi Κ(xi, x) -  Κ(x, x) 
 
where images with higher values are closer to the hyper-sphere and thus, are more 
likely to belong to the same query concept.  

In [3] image retrieval performance is successfully improved by using a one-
class SVM for intra-query learning. Scholkopf proposed another approach [14] in 
which a largest margin hyperplane is used to separate the training data from the 
origin. When the training data has unit norm this is identical to the approach taken 
by Tax [15] (explained above). In this paper, as in [3], we will follow the approach 
developed by Tax [15].  

3 Proposed Approach           

Using one-class SVMs we obtain set membership knowledge (about previous 
users’ query concepts), which can be visualized as hyper-spheres in feature space. 
In order to integrate this prior experience with a user’s current query, we do a 
fuzzy classification of the user’ s query concept. When a query is submitted, we 
determine whether it falls into one of the existing one-class SVMs. Because it is 
very common for an image to be ascribed into many different concepts, we expect 
to have queries that fall into many hyper-spheres. One possible way of selecting 
the images that will be presented to the user would be to perform a hard 
classification by retrieving the KNN images closest to the nearest center (i.e., 
KNN images to the closest prototype). However, this purely exploitative approach 
is not a very good strategy since the query is considered not to be an outlier by 
several one-class SVMs. It may as well be ascribed to the concept corresponding 
to any one of the other hyper-spheres. Furthermore, the query may be ascribed to a 
combination of different concepts. Therefore, instead, we use the ideas from 
possibilistic cluster analysis [7] and assign a degree of membership to each one of 
the one-class SVMs (i.e., to each cluster) according to the degree by which the 
query can be ascribed to its particular concept. A possibilistic cluster analysis 
drops the probabilistic constraint that the sum of the degrees of membership of 
each image to all one-class SVMs is equal to one [7]. Therefore, possibil istic 
cluster partitions are especially useful in the classification of images because it is 
often the case that an image cannot be assigned to any one of the existing clusters 
[7]. 

Let’ s introduce some terminology. Let D = ℜd be the data space of d-
dimensional image vectors, C = { c1, c2, …, cn} be the concept space (i.e., the set of 
concepts corresponding to all existing one-class SVMs), and R = {{ c} | c ∈ C} be 
the result space. The result of a data analysis is a mapping µ: X → { c} , where X ⊆ 
D and c ∈ C. Then, A(D, R) = { µ | µ: X → K, X ≠ φ, K ∈ R} is called an analysis 
space [7]. The fuzzy set of X is a mapping µ: X → [0,1] and the set containing all 



fuzzy sets of X is denoted by F(X) = { µ | µ: X → [0,1]} . Then, Afuzzy(D, R) = A(D, 
{ F(K) | K ∈ R} ) is the fuzzy analysis space for A(D, R). A result of an analysis µ: 
X → F(K) is called a possibilistic cluster partition if ∀k ∈ K:  ∑x∈X  µ(x, k) > 0, 
where µ(x, k) is interpreted as the degree of membership of x ∈ X into the cluster k 
∈ K [7]. 

The fuzzy c-means algorithm carries out a data analysis by minimizing an 
objective function. It searches for an optimal set of spheres (i.e., clusters) of d-
dimensional points in a feature space. The clusters are represented by their 
corresponding centers  (i.e., by their prototypes) and Euclidean distance is used as 
the measure of distance between a point x and a prototype ai [7]. In our case, the 
set of clusters (in the form of one-class SVMs) is formed by the historical 
interaction of users with the system. We use the foll owing membership function to 
assign degrees of membership to the n hyper-spheres into which a query x falls 
[7]: 

            n  
µ(x, ai) = 1 / ∑ (||Φ(x) – ai||

2 / ||Φ(x) – aj||
2)  for ∀i 

                       j=1 
 

where ai is the center of the ith hyper-sphere and  Φ: ℜn → F. Therefore, the degree 
of membership of a query into a one-class SVM is based on the relative distances 
between the query and the centers of all hyper-spheres into which it falls. Suppose 
a query x fall s into n hyper-spheres. If ci denotes the concept that is embodied by 
the ith hyper-sphere then the belief (or our degree of confidence) that x is 
delivering concept ci is equal to µ(x, ai). 

Our approach for selecting the set of images that wil l be presented to the user 
(i.e, the retrieval set) is based on combining exploitation and exploration while 
maximizing the number of relevant images in the retrieval set. The results of 
experiments conducted in [1] for learning users’ text preferences suggest that, for 
simple queries (i.e., queries that can be ascribed to one concept), a purely 
exploitative strategy delivers very good performance. However, for complex 
queries (i.e., queries that can be ascribed to more than one concept), there is a 
tradeoff between faster learning of the user’s query concept and the delivery of, in 
our case, more relevant images. In other words, for a complex query, we may be 
able to maximize the number of relevant images presented to the user by selecting 
images that can be ascribed to the concept with the largest µ(x, ai) (i.e., by pure 
exploitation). However, we may not be able to learn the user’s query concept 
unless some exploration is also done. The approach that we take is to combine 
exploitation and exploration while, at the same time, attempting to maximize the 
number of relevant images that are presented to the user.  

To fully exploit the relevance feedback information provided by the current 
user, we set  µ(x, acurrent) = w, where acurrent is the center of a hyper-sphere formed by 
using all the feedback provided by the current user (or the original query image 
when no relevance feedback iterations have been performed yet) and 0 ≤ w ≤ 1 
signifies our confidence that acurrent captures the user’s query concept. To form the 
retrieval set, sample representative images from each hyper-sphere in which the 
query falls are included. The number of representatives that a particular concept ci 
has in the retrieval set is proportional to µ(x, ai). Thus, if N(ci) denotes the number 



of images of concept ci that appear in the retrieval set then N(ci) < N(cj) whenever 
µ(x, ai) < µ(x, aj). Because a query may fall into many hyper-spheres but only a 
fixed number of images is to be retrieved, priority is given to hyper-spheres with 
higher µ(x, ai) and, after the fixed number of images is reached, the remaining 
hyper-spheres with smaller µ(x, ai) are ignored. This allows us to perform 
exploitation and exploration while, at the same time, maximizing the possibility of 
presenting relevant images to the user. The search of the historical one-class 
SVMs could be done efficiently by building an M-Tree in feature space [10]. 

At system startup there is no historical interaction of users with the system and 
thus, no prior experience. A query is then considered to be the center of its own 
cluster, w = 1, and the retrieval set is formed by the same steady-state procedure 
outlined above. Similarly when there is prior historical information but the query 
does not fall into any hyper-sphere. The images marked as relevant by the user 
during the relevance feedback iterations are used as training data and a one-class 
SVM is used to learn the set membership (in the sense of a user’s query concept). 
Figure 1 shows a block diagram of the system. 

 
 

User submits  
query image   

    x 
       
   Prior experience                                                 Fuzzy 
   Query concepts                                               Classification 
   Information (1-SVMs)                                                                    

                                                                           { (a1 , µ(x, a1)), (a2 , µ(x, a2)), … (an , µ(x, an))}                     
                
                       Image                                         Search             
                    Database 

                                                        Retrieval set D = { x1, x2, …,xn}  
                                                                                                      
                           User’s relevance                              Current user’s 
           feedback               SAVE               feedback 
     { (x1, 1),  (x2 , 0) …,(xn, 1)}  
                                                                                             
                                                                              

                      One-class SVM 
   SAVE                                                        computation                             
                                                             
                                                        Hyper-sphere information  
                          NO                                                                                              YES 
                   More                   
 Hyper-sphere information    RF iterations? acurrent (center of hyper-sphere) 

 
Figure 1. System diagram 

4 Experimental Results 

We compare the performance of our approach against that of relevance feedback 
methods that do not use historical information. The response of our technique with 
respect to different amounts of experience (data level) and with respect to quality 



(noise level) of historical information is also investigated. The retrieval 
performance is measured by precision, which is defined as 

 
           number of relevant images retrieved  

               precision =                                                                                    number of images retrieved  
The Texture database, obtained from MIT Media Lab, consists of 640 images 

of size 128x128. There are 15 classes (corresponding to different textures) and 
each image is represented by a 16-dimensional feature vector. To determine the 
free parameters, a ten-fold cross-validation was performed. Our approach was then 
evaluated with different amounts of experience (data level) using a Gaussian 
kernel with width s = 0.1, and a misclassification penalty C = 1/(p*n), where n is 
the number of training images, with p = 0.001. The weight for exploration of 
historical information is (1-w), where w = 0.25. The number of images in the 
retrieval set k = 20. Figure 2a shows the precision of the initial retrieval (i.e., with 
no relevance feedback iterations) with respect to different data levels. The values 
reported are the average of the ten tests. The level of data is the number of hyper-
spheres relative to the number of images in the database.  We can observe that, 
with low data levels (less than 1/3), precision is less than that obtained by simply 
retrieving the KNN images in input or feature space, which is the approach to 
create the initial retrieval set taken by relevance feedback methods that do not use 
historical information.  

In order to avoid the initial decrease in performance we could adaptively 
change the value of the parameter w so that at the beginning, when there is little 
historical information, w is large and, as experience accumulates, w becomes 
increasingly smaller (i.e., more exploration is done). Thus by doing more 
exploitation at the beginning we would avoid the initial drop in performance. 
Nevertheless, with the increasing experience, the precision becomes higher and, 
with significant data levels, there is a large gain in performance. 

In order to investigate the robustness of our approach with respect to poor 
historical information, simulated noise was added. Figure 2b shows the precision 
of the initial retrieval at different amounts of noise. The percentage of noise is the 
probability that a users’ feedback for each image is flipped (i.e., the probabil ity 
that an image marked as “ relevant” by the user wil l be marked “non-relevant” , and 
vice versa). We can observe that, with reasonable amounts of noise, data level is 
the dominating factor on the performance of our approach and quali ty of historical 
information has a small effect.  

The Segmentation database, which contains 2310 outdoor images, was taken 
from the UCI repository at http://www.ics.uci.edu/~mlearn/MLRepository.html. 
There are 7 classes (each with an equal number of instances) and a 19-dimensional 
feature vector is used to represent each image. A one-fold cross validation was 
conducted to determine the free parameters. Figure 2c shows the precision of the 
initial retrieval at different data levels with s = 25, p = 0.001, w = 0.25, and k = 20.  
Similarly, we can observe that with significant data levels (more than 1/2 in this 
case), our approach performs better than relevance feedback methods that do not 
use historical information. From Figure 2d we can observe that our method 
outperforms an approach based on using a one-class SVM for intra-query learning 
only (i.e., with data level 0). These results support the efficacy of our method.  
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Figure 2. Initial Retrieval Set: (a),(c) Precision vs Data Level, (b) Precision vs  
               Noise Percentage, (d) Precision vs Iteration of Relevance Feedback 

5 Conclusions 

This paper presented an approach for incorporating historical information into a 
relevance feedback system to improve image retrieval performance. By training 
one-class SVMs with users’ feedback, we can learn users’ query concepts and 
accumulate retrieval experience. Using a fuzzy classification approach we exploit 
both current and historical information to improve retrieval performance. Initial 
investigation suggests that our approach improves retrieval in the initial set where 
a traditional intra-query approach requires an iteration of relevance feedback to 
provide improvement. Therefore, our method reduces user interaction by reducing 
the number of iterations needed to satisfy a query. Furthermore, it is robust to poor 
historical information. Our future research will focus on methods for combining or 
merging hyper-spheres (i.e., users’ concepts). This may be desirable when the 



amount of historical information is very large. Also, we will investigate some 
systematic scheme for adaptively changing w so that the amount of exploration 
done is proportional to the amount of experience. 
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