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Abstract

In previous work, we developed a novel Relevance Feed-
back (RF) framework that learns One-class Support Vector
Machines (1SVM) from retrieval experience to represent the
set memberships of users’ high level semantics. By doing a
fuzzy classification of a query into the regions of support
represented by the 1SVMs, past experience is merged with
short-term (i.e., intra-query) learning. However, this led
to the representation of long-term (i.e., inter-query) learn-
ing with a constantly growing number of 1SVMs in the fea-
ture space. We present an improved version of our earlier
work that uses an incremental k-means algorithm to cluster
1SVMs. The main advantage of the improved approach is
that it is scalable and can accelerate query processing by
considering only a small number of cluster representatives,
rather than the entire set of accumulated 1SVMs. Experi-
mental results against real data sets demonstrate the effec-
tiveness of the proposed method.

1. Introduction

We can distinguish two different types of information
provided by Relevance Feedback (RF). The short-term
learning obtained within a single query session is intra-
query learning. The long-term learning accumulated over
the course of many query sessions is inter-query learning.
By accumulating knowledge from users, inter-query learn-
ing aims at enhancing future retrieval performance. Thus
both short and long-term learning are useful in Content
Based Image Retrieval (CBIR). However, in most current
systems, all prior experience from past queries is lost. That
is, the system only takes into account the current query ses-
sion without using any long-term learning.

A few approaches [3, 4, 7, 12] perform inter-query learn-
ing. In [4] Latent Semantic Analysis is used to provide a

generalization of past experience. Both [7] and [12] per-
form a complete memorization of prior history and the cor-
relation between past image labeling is merged with low-
level features to rank images for retrieval. The initial re-
sults from those approaches for inter-query learning show
an enormous benefit in the initial and first retrieval itera-
tions. Therefore, inter-query learning has a great potential
for decreasing the amount of user feedback by reducing the
number of interactions needed to satisfy a query.

In previous work [3], we presented a novel RF
framework that uses One-Class Support Vector Machines
(1SVM) to model set membership knowledge about users’
high level concepts. For each query, the resulting RF is used
to train a 1SVM, which is then saved. Thus, inter-query
learning is accumulated in the form of 1SVMs. By doing
a fuzzy classification of a query into the regions of support
represented by the 1SVMs, past experience is merged with
current intra-query learning. However, this way of stor-
ing inter-query learning results in a constantly increasing
number of (possibly overlapping) clusters (i.e., 1SVMs) in
the feature space. In this paper, we build on that work by
incorporating an implicit cluster-merging process to incre-
mentally summarize the derived inter-query learning. The
similarity measure that is used for clustering 1SVMs takes
both distance in feature space and a probabilistic percep-
tual closeness (based on users’ RF) into consideration. The
main advantage of the improved approach is that it is scal-
able and it can accelerate query processing by considering
only a small number of cluster representatives, rather than
the entire set of accumulated 1SVMs.

2. The proposed Approach

Figure 1 shows a diagram of the proposed approach. At
the first stage, the user submits a query image q to the sys-
tem. Let k be the size of the retrieval set and 0 ≤ wintra ≤
1. The retrieval set that is returned to the user is formed by
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Figure 1. Proposed Approach

including (wintra)k nearest neighbor images to q in feature
space and (1-wintra)k nearest neighbor images to the clus-
ter representative that is closest to q. Thus, the ratio of intra
to inter-query learning that is used in processing a query is
wintra:(1-wintra). The M-tree [2] data structure is used for
the efficient search of nearest neighbor images. For details,
see [2]. At the next stage, the user evaluates the relevance
of images in the retrieval set. The images marked as rel-
evant are used as training data for a 1SVM. The center of
the resulting hypersphere (i.e., the 1SVM) becomes the new
query for the second round and this process continues until
the user is satisfied with the results or quits. When the ses-
sion is over, an implicit cluster-merging process takes place.
This process determines, from a fixed number of cluster rep-
resentatives, the most similar one to the resulting 1SVM and
combines both. Thus, inter-query learning is summarized
by a small number of cluster representatives.

2.1. 1SVM Computation

We show how the computation of the 1SVM from the
user-labelled relevant images is performed. Consider train-
ing data {x1,x2, · · · ,xn} where xi ∈ �d is the feature
vector of the ith user-labelled relevant image in the retrieval
set. Let Φ : �d → �D be a non-linear mapping from the
original (d dimensional) input space to the (D dimensional)
feature space with D ≥ d. We want to map the training data
to the higher dimensional feature space and obtain a hyper-
sphere that is as small as possible while, at the same time,
including most of the training data. That is, the task is to
minimize the following objective function (in primal form)

minR∈�,ζ∈�n,a∈�D R2 + C
∑n

i=1 ζi

s.t. ||Φ(xi) − a||2 ≤ R2 + ζi, ζi ≥ 0, i = 1, 2, . . . , n

where R and a are the radius and center of the hypersphere,
respectively. The parameter 0 ≤ C ≤ 1 gives the tradeoff
between R and the number of training data that can be in-
cluded inside the hypersphere. By setting partial derivatives

to 0 in the corresponding Lagrangian we obtain the follow-
ing expression for a

a =
n∑

i=1

αiΦ(xi)

Replacing partial derivatives into the Lagrangian it can be
noticed that a is a linear combination of the training data.
This allows us to use a kernel function. A kernel K calcu-
lates the dot product in the feature space of the images of 2
points from input space, K(xi,xj) =< Φ(xi) · Φ(xj) >.
We obtain the following objetive function (in dual form)

minα

∑n
i=j=1 αiαjK(xi,xj) −

∑n
i=1 αiK(xi,xi)

s.t. 0 ≤ αi ≤ C,
∑n

i=1 αi = 1

where K is an appropriate Mercer kernel. We use the Gaus-
sian kernel K(xi,xj) = e−||xi−xj||2/σ2

, where σ is the
width of the Gaussian function. A quadratic programming
method is used to find the optimal α values in the objective
function [11].

2.2. Similarity Measure

During the intra-query learning process, the system
presents a set of images to the user at each RF iteration.
The user then labels each image as either relevant (i.e., 1) or
non-relevant (i.e., -1). The system then refines the query by
performing the 1SVM computation on the set of all relevant
images and the process continues until the user is satisfied
with the results or quits. Let the accumulated intra-query
learning at the end of the RF iterations for the qth query be
the following set of 3-tuples

IQKq = {(idq
1, rf

q
1 , αq

1), . . . , (id
q
m, rfq

m, αq
m)}

where m is the number of images retrieved (over all RF
iterations), idq

i ∈ N is the index of an image in the database
and refers to the ith retrieved image, rfq

i ∈ {1,−1} is its
corresponding RF, and αq

i ∈ � is its weight as calculated
by the 1SVM computation (0 ≤ αq

i ≤ 1 if rfq
i = 1, 0

otherwise). The center aq of the corresponding hypersphere
(1SVM) is then

aq =
m∑

i=1

αq
i Φ(xidq

i
)

where xidq
i

is the feature vector of the image with index idq
i

in the database. Let the accumulated inter-query learning H
be summarized by a fixed number r of cluster representa-
tives. The jth cluster representative Cj is a 2-tuple defined
as follows

Cj = (pj, wordsj)
wordsj = {(idj

1, rf
j
1 , wj

1), . . . , (id
j
s, rf

j
s , wj

s)}

Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04) 
0-7695-2108-8/04 $ 20.00 © 2004 IEEE 



where pj is the pre-image of Cj’s center in feature space,
which is computed as explained in the next section. Thus,
the center of Cj in feature space is cj = Φ(pj). The s im-
ages (each with corresponding “semantic weight” wj

i ∈ �)
in wordsj contribute to Cj’s concept. Intuitively, wordsj

describes the high-level semantics (i.e., the concept) associ-
ated with Cj and denoted by Ψ(Cj). For a database image
xid, let the set O be defined as follows

O =
r⋃

h=1

{wh
i |(id, 1, wh

i ) ∈ wordsh}

That is, O contains the “semantic weights” of xid from all
cluster representatives in which xid appears as a relevant
image. Given that the user has labelled xid as a relevant
image and given H , we define the single-image probability
that the user’s concept is Ψ(Cj) as follows

p(Ψ(Cj)|id,H) =
wj

∑
w∈O w

where wj = wj
i if wj

i ∈ O, 0 otherwise. Thus, among all
Ψ(Cj) in which xid is relevant, the Ψ(Cj) in which xid

has the largest “semantic weight” has the highest probabil-
ity of matching the user’s concept. The total probability
for each Ψ(Cj) is obtained by summing the single-image
probabilities of images that are co-occurring and relevant in
both wordsj and IQKq. Therefore, the Ψ(Cj) that has the
largest semantic overlap will have the highest probability of
coinciding with the user’s concept. Thus, given IQKq and
H , we define the overall probability that the user’s concept
is Ψ(Cj) as follows

P (Ψ(Cj)|IQKq,H) =
∑

id∈S p(Ψ(Cj)|id,H)
|M |

where

S = {id|(id, 1, ∗) ∈ (IQKq ∩ wordsj)}
M = {id|(id, ∗, ∗) ∈ (IQKq ∩ wordsj)

∧ (id,−1, ∗) /∈ (IQKq ∩ wordsj)}
where ∗ is a “dont-care” symbol indicating that the corre-
sponding tuple element is ignored when determining the in-
tersection. For each cluster representative Cj , we compute
its distance to IQKq with the following similarity measure

Dist(Cj , IQKq) = (1 − 2P (Ψ(Cj)|IQKq,H))∆
+||cj − aq||2

where 0 ≤ ∆ ≤ 1 is a distance adjustment. Thus, the dis-
tance between cj and aq in feature space is adjusted based
on the probability of Ψ(Cj). Therefore,the proposed simi-
larity measure adjusts the distance between the hypersphere
and the cluster representatives based on an estimate of their
conceptual similarity, which is derived from both the cur-
rent intra-query and accumulated inter-query learning.

2.3. Pre-Image Computation

As previously shown, the center of a hypersphere
(1SVM) is expressed as an expansion in terms of its corre-
sponding support vector images. The center cj of a cluster
representative Cj is the mean of the centers of all the hyper-
spheres that have been merged with Cj . Therefore, its lo-
cation in feature space would have to be expressed in terms
of the support vector image of all of those hyperspheres’
centers. However, the complexity of distance computations
scales with the number of support vectors. Thus, this would
result in a system that is both considerably slower and not
scalable since the memory needed for storing cluster rep-
resentatives’s centers would continually increase as more
queries are processed. This fact motivated us to use pre-
images for approximating cluster representatives’ centers.

The pre-image problem is to find a point x ∈ �d in in-
put space such that, for a given ϑ ∈ �D in feature space,
ϑ = Φ(x). However, since the map Φ into the feature
space is nonlinear, this is often impossible (i.e., the pre-
image x does not exist). Therefore, instead, we can find an
approximate pre-image p ∈ �d such that ||ϑ − Φ(p)||2 is
minimized [10]. Traditional methods [1, 9] solve this opti-
mization problem by performing iteration and gradient de-
scent. The disadvantage of those methods is that the op-
timization procedure can be expensive and may result in
finding a local optimum [10]. The basic idea of the ap-
proach presented in [6] is to use distance constraints in the
feature space to approximate the location of the pre-image.
That is, distances between ϑ and its neighbors in feature
space are found. Then, the corresponding input-space dis-
tances are computed and used to constraint the location of
the pre-image [6]. In this paper, we apply this method to
our problem.

Let dci be the feature-space distance between a cluster
representative’s center cj and a database image xi. Using
the Gaussian kernel defined in Section 2.1 we solve for the
corresponding input-space distance d̂ci between cj and xi

d̂ci = −σ2log(1 − dci

2
)

Let {x1,x2, . . . ,xk} be the k nearest neighbor images
to cj in feature space. Each image xi in the database
is represented by an n-dimensional feature vector, xi =
{xi1, xi2, . . . , xin}. Then, the problem is to find the least-
squares solution cj = {cj1, cj2, . . . , cjn} to the system of
equations

||cj − xi||2 = d̂ci, i = 1, . . . , k

After expanding, grouping like terms, and substracting the
kth equation from the rest we obtain a system of the form
Ax = b, where A is a (k-1) by n matrix with row vectors

[2(xk1 − xi1) . . . 2(xkn − xin)], i = 1, . . . , k
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b is a (k-1) by 1 vector with rows

[−(xi · xi) + (xk · xk) − d̂ck + d̂ci], i = 1, . . . , k

and x = [cj1, cj2, . . . , cjn]T . We then use the Singular
Value Decomposition of A to solve this least-squares prob-
lem.

2.4. Cluster Merging

The merging of clusters (i.e., hyperspheres) is the core
of our approach. It is used to accelerate query processing
by considering only a small number of cluster represen-
tatives rather than the entire set of hyperspheres. The k-
means (KM) [8] algorithm is one of the simplest and most
commonly used clustering algorithms. It starts with a ran-
dom partitioning of patterns to clusters and keeps reassign-
ing patterns to clusters based on their similarity to cluster
centers until there is no reassignment of any pattern from
one cluster to another or a convergence criterion is met [8].
We use a modified KM algorithm in which training is done
incrementally one pattern (i.e., one hypersphere) at a time
as successive queries are processed. The cluster merging
algorithm is as follows:

1. Choose k cluster representatives to coincide with the
first k hyperspheres.

2. For each input hypersphere IQKq

For all cluster representatives Cj , j = 1, . . . , r

(a) Compute Dist(Cj , IQKq)

3. Set Cwinner = arg minCj Dist(Cj , IQKq)

4. Move Cwinner towards IQKq

(a) Move cwinner towards aq

(b) Update Ψ(Cwinner) towards Ψ(IQKq)

Therefore, the proposed method for merging a hyper-
sphere with the closest cluster representative is composed
of two stages: move the cluster’s center in feature space
towards the hypersphere’s center and update the cluster’s
concept so that it is more similar to the hypersphere’s se-
mantics. At the first stage, a weighted average between
the support vector images that make up the hypersphere’s
center and the cluster’s pre-image is taken. Then, the pre-
image of the cluster center’s new location in feature space is
computed. At the second stage, the union between images
in IQKq and wordswinner is taken. Then, the “semantic
weight” of co-occurring relevant images is increased. Sim-
ilarly, the “semantic weight” of images with opposite feed-
back is decreased. For any cluster representative Cj , only
a fixed number z of images is kept in wordsj . Thus, when
|wordsj | > z, images with lowest “semantic weight” are
deleted.

3. Experimental Results

We compare the performance of the proposed method
(i.e., with cluster-merging) against that of the original sys-
tem in terms of retrieval performance. The goal is to de-
termine whether high retrieval performance can be obtained
when summarizing inter-query learning. We have also im-
plemented the Statistical Correlation (SC) approach [7].

The original system presented in [3] keeps the entire set
of accumulated 1SVMs. When a query q is submitted, the
retrieval set is formed by including wintrak, 0 ≤ wintra ≤
1, nearest neighbor images in feature space to q. The re-
maining (1 − wintra)k images are determined by doing a
fuzzy classification of q into all the 1SVMs into which it
falls. Possibilistic cluster analysis [5] is used to assign a
degree of membership to each of the 1SVMs (i.e., to each
cluster) according to the degree by which q can be ascribed
to that particular concept. A number of images, which is
proportional to the degree of membership, is then retrieved
from each of the 1SVMs into which q falls.

The retrieval performance is measured by precision
which is the percentage of relevant images in relation to the
number of images retrieved. The following data sets were
used for evaluation:

Texture - the texture data set, obtained from MIT Media
Lab. There are 40 different texture images that are manu-
ally classified into 15 classes. Each of those images is then
cut into 16 non-overlapping images of size 128x128. Thus,
there are 640 images in the database. The images are repre-
sented by 16 dimensional feature vectors. We use 16 Gabor
filters (2 scales and 4 orientations).

Letter - the letter data set consists of 20,000 character
images, each represented by a 16-dimensional feature vec-
tor. There are 26 classes of the 2 capital letters O and Q.
The images are based on 20 different fonts with randomly
distorted letters.

To determine the free parameters, a ten-fold cross-
validation was performed for the Texture and Letter data
sets. The values reported are the average of the ten tests.

Figures 2 and 3 show the precision of the initial retrieval
set (i.e., with no RF iterations) with respect to different data
levels. The data level is the number of processed queries
relative to the number of images in the data set. These
figures also show the performance obtained by running the
proposed method without using pre-images to approximate
cluster representatives’s centers (i.e., by keeping their full
expansions).

Based on these figures, we can observe that the perfor-
mance loss that results from using pre-images to approxi-
mate cluster representatives’ centers is small. Furthermore,
this loss of performance is well justified by the resulting
gain in speed and scalability. We also make the following
observations about the advantages of the proposed cluster-
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Figure 2. Initial Retrieval Performance

merging approach over the original method: Precision does
not degrade with low data levels. It is higher on low data
levels and slightly smaller with high levels of data. Also,
there is a large gain in execution time; memory require-
ments are small and do not increase with time.

4. Conclusions

By learning 1SVMs from retrieval experience, it is pos-
sible to maintain a database of user’s query semantics. In
this paper, we proposed using an incremental k-means al-
gorithm to cluster 1SVMs. We used a similarity measure
which takes both distance in feature space and a probabilis-
tic perceptual closeness into consideration. The main ad-
vantage of the proposed approach is that it is scalable and it
can accelerate query processing by considering only a small
number of cluster representatives, rather than the entire set
of accumulated 1SVMs. Initial investigation suggests that
a comparable (or better) retrieval performance can be ob-
tained when summarizing inter-query learning with a small
number of cluster representatives.
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