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Abstract

Relevance feedback approaches based on support vector
machine (SVM) learning have been applied to significantly
improve retrieval performance in content-based image re-
trieval (CBIR). Those approaches require the use of fixed-
length image representations because SVM kernels repre-
sent an inner product in a feature space that is a non-linear
transformation of the input space. Many region-based CBIR
approaches create a variable length image representation
and define a similarity measure between two variable length
representations. The standard SVM approach cannot be ap-
plied to this approach because it violates the requirements
that SVM places on the kernel. Fortunately, a generalized
SVM (GSVM) has been developed that allows the use of
an arbitrary kernel. In this paper, we present an initial in-
vestigation into utilizing a GSVM-based relevance feedback
learning algorithm. Since GSVM does not place restrictions
on the kernel, any image similarity measure can be used. In
particular, the proposed approach uses an image similarity
measure developed for region-based, variable length rep-
resentations. Experimental results over real world images
demonstrate the efficacy of the proposed method.

1. Introduction

In traditional approaches to content-based image re-
trieval (CBIR), images are represented by a set of global
features and retrieval is performed based on similarity in
the feature space. In contrast, region-based approaches
[1, 14, 22] extract features from segmented regions of an
image. Then, images are retrieved according to similarity
among regions. The main objective of using regions is to do
a more meaningful retrieval that is closer to a user’s percep-
tion of an image’s content. Instead of looking at an image
as a whole, we look at the objects in the image and their

relationships.

Both Blobworld [1] and Netra [14] require the user to
select the region(s) of interest from the segmented image.
A major problem with this approach is that segmented re-
gions usually do not correspond to actual objects in the im-
age. In order to overcome the problems of inaccurate seg-
mentation, approaches have been proposed that consider all
regions in an image for determining similarity [3, 13, 22].
In [13], integrated region matching (IRM) is proposed as a
measure that allows a many-to-many region mapping rela-
tionship between two images by matching a region of one
image to several regions of another image. Thus, by having
a similarity measure which is a weighted sum of distances
between all regions from different images, IRM is more ro-
bust to inaccurate segmentation. Recently, a fuzzy logic ap-
proach, unified feature matching (UFM)[3] was proposed
as an alternative to IRM. An image is represented by a set
of segmented regions each of which is represented by a set
of fuzzy features denoting color, texture, and shape charac-
teristics. Because fuzzy features can characterize the grad-
ual transition between regions in an image, segmentation-
related inaccuracies are implicitly considered. The similar-
ity between two images is then defined as the overall simi-
larity between two sets of fuzzy features.

Relevance feedback (RF) learning is a common approach
that attempts to reduce the semantic gap between high-level
concepts and low-level features. It works by gathering se-
mantic information from user interaction. The user labels
each image returned in the previous query round as relevant
or non-relevant (or a range of values). Based on this feed-
back, the retrieval scheme is adjusted and the next set of
images is presented to the user for labelling. Two main RF
learning approaches have been used: query modification,
and distance reweighting. Query modification changes the
representation of the user’s query in a form that is closer
(hopefully) to the semantic intent of the user. Distance
reweighting changes the calculation of image to image sim-
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Figure 1. Features are unequal in their differential rel-
evance for computing similarity. The neighborhoods of
queries b and c should be elongated along the less relevant
Y and X axis respectively. For query a, features X and Y
have equal discriminating strength

ilarity to strengthen the contribution of relevant image com-
ponents in regard to the current query. Probabilistic fea-
ture relevance learning (PFRL) [18] is an effective distance
reweighting technique that adaptively computes local fea-
ture relevance in CBIR systems that use global image rep-
resentations. It computes flexible retrieval metrics for pro-
ducing neighborhoods that are elongated along less relevant
feature dimensions and constricted along most influential
ones (See Figure 1). In [9], we presented an algorithm
inspired by PFRL, probabilistic region relevance learning
(PRRL). It is based on the observation that regions in an
image have unequal importance for computing image sim-
ilarity. It performs distance reweighting by estimating the
relevance of each region in an image based on user’s feed-
back.

RF schemes based on support vector machine (SVM)
[20, 21] learning have been applied to significantly improve
retrieval performance in CBIR systems that use global im-
age representations [4, 11, 24]. In [4], relevant images are
used to estimate the distribution of target images by fitting
a tight hypersphere in the non-linearly transformed feature
space. In [24], the problem is regarded as a two-class clas-
sification problem and a maximum margin hyperplane in
the non-linearly transformed feature space is used to sepa-
rate relevant images from non-relevant images. Many other
approaches, such as [10, 25], have provided improved ap-
proaches for utilizing kernel methods and SVMs in CBIR.
However, all of these approaches require a valid Mercer ker-
nel. That is, the kernel must satisfy the Mercer conditions
[5]. Many region-based CBIR approaches create a variable
length image representation and define a similarity measure

between two variable length representations. Thus the stan-
dard SVM approach cannot be applied because it violates
the requirements that SVM places on the kernel.

To resolve the issue of common SVM kernels not allow-
ing variable-length representations, the following general-
ization of the Gaussian kernel was introduced in [12]

KGGaussian(x,y) = e
−d(x,y)

2σ2 (1)

where d is a distance measure in the input space between
two variable-length image representations x = {Ri}

n
1 and

y = {R′
i}

m
1 , where Ri represents the features extracted

from a region in the image. Then, using a particular form
of (1) with d being the Earth Mover’s distance (EMD) [19]
is proposed. The EMD computes the distance between two
distributions represented by sets of weighted features. It is
the minimal cost of changing one distribution into the other.
The cost is defined in terms of a user-defined ground dis-
tance that measures the distance between two features. A
distribution can have any number of features. Therefore,
EMD can operate on variable-length representations of dis-
tributions. Thus an image can be seen as a distribution with
a variable number of regions. Then, the kernel proposed in
[12] is

KGEMD(x,y) = e
−EMD(x,y)

2σ2

where EMD(x,y) is the EMD distance. The ground dis-
tance between two regions d(Ri,R

′
j) is set to the Euclidean

distance. In order for EMD to be a true metric, the ground
distance must be a metric [19]. Therefore, this approach
does not allow for arbitrary image similarity measures.

A generalized SVM (GSVM) [16] allows the use of an
arbitrary kernel. In this paper, we propose using a GSVM-
based RF learning algorithm that can be applied to region-
based CBIR systems that use arbitrary similarity measures.
The rest of the paper is organized as follows. In Section 2
we give a brief overview of GSVM. The proposed learning
algorithm is presented in Section 3. A brief description of
UFM, which is used as the particular region-based image
similarity measure used in our learning algorithm, is given
in Section 4. In Section 5 we summarize PRRL, whose per-
formance is compared against that of the proposed method.
Experimental results are given in Section 6. Finally, we give
some concluding remarks in Section 7.

2. Generalized Support Vector Machine

Let X ∈ <m×n and B ∈ <n×l. The kernel k(X,B)
implements an arbitrary function mapping <m×n × <n×l

into <m×l. In particular, given two column vectors x, b ∈
<n, k(xT ,XT ) is a row vector in <m, k(xT ,b) ∈ <, and
k(X,XT ) is an m×m matrix [16].



Given training data {(xi, yi)}
m
1 , where xi ∈ <

n and
yi ∈ {1, 0}, represent it by matrix X ∈ <m×n and diag-
onal matrix of plus or minus ones Y ∈ <m×m. Suppose
we have a separating hyperplane induced by k(X,XT ) de-
fined as

k(xT ,XT )Y · u = b (2)

where u ∈ <m and b ∈ <. In the particular case that k is an
inner product kernel under Mercer’s condition, the separat-
ing surface becomes

φ(x)T φ(X)T Y · u = b

where φ : <n → <z, with z ≥ n. The parameters u and
b in (2) can obtained by solving the following optimization
problem

arg minu,b,ξ Ce · ξ + θ(u) (3)

s.t. Y(k(X,XT ))Yu − eb) + ξ ≥ e

ξ ≥ 0.

where e ∈ <m is a column vector of ones, θ is some convex
function, C is a positive parameter that weights the sepa-
ration error e · ξ versus suppression of the separating sur-
face parameter u. Suppression of u can be interpreted as
minimizing the number of constraints of (3) with positive
multipliers (i.e., number of support vectors). In the partic-
ular case that θ is a quadratic function induced by a posi-
tive definite kernel, we have the standard interpretation of
a maximal margin hyperplane [16]. A solution to (3) with
corresponding decision function is referred to as a GSVM
in [16].

In the particular case that θ in (3) is a convex quadratic
function (i.e., θ(u) = 1

2u · Hu, where H ∈ <m×m is a
symmetric positive definite matrix), the Wolfe dual [15, 23]
of (3) is

minα∈<m

1

2
·Yk(X,XT )YH−1Yk(X,XT )T Yα − e · α

s.t. e ·Yα = 0

0 ≤ α ≤ Ce.

and u = H−1Yk(X,XT )T Yα. If k(X,XT ) is assumed
to be symmetric positive definite and H = Yk(X,XT )Y,
then we obtain the dual problem for a standard SVM with
u = α [16]. The basic idea in [16] is to choose other values
for the matrix H that will also suppress u. In the simplest
case, choosing H = I (i.e., the identity matrix) with u =
Yk(X,XT )T α results in the following dual problem

minα∈<m

1

2
·YAYα − e · α (4)

s.t. e ·Yα = 0

0 ≤ α ≤ Ce.

where A = k(X,XT )k(X,XT )T is a positive semidefinite
matrix. Thus, this is an always solvable convex quadratic
problem for any kernel k [16]. For more details, see [16].

3. Proposed Method

The standard SVM approach cannot be applied in the
case of region-based CBIR methods that define a similar-
ity measure between two variable length image representa-
tions. This is because the requirements that SVM places
on the kernel are violated. Fortunately, a GSVM allows us
to use arbitrary kernels. We present a GSVM-based learn-
ing approach that allows us to use arbitrary image similarity
measures.

Let an image be represented by x = {Ri}
n
1 , where

Ri represents the features extracted from a region in the
image . Let S(xi,xj) be an arbitrary similarity measure
between two images. During the RF process for a par-
ticular query image, the user marks each retrieved image
xi as relevant (yi = 1) or non-relevant (yi = 0). We
use the set of cumulative retrievals R = {(xi, yi)}

m
1 as

training data in (4). Set k(xi,xj) = S(xi,xj) and let
sxi

= [S(xi,x1) S(xi,x2), · · · , S(xi,xm)]T (i.e., vec-
tor of similarities of xi to all training images). Then, the
(i, j)th entry of matrix A in (4) is 〈sxi

· sxj
〉 (i.e., the dot

product of sxi
and sxj

). Let KR(xi,xj) = 〈sxi
· sxj
〉. The

equivalent (non-matrix) notation for (4) is then as follows

minα∈<m

1

2

m
∑

i=1

m
∑

j=1

αiαjyiyjKR(xi,xj)−

m
∑

i=1

αi (5)

s.t.

m
∑

i=1

αiyi = 0

0 ≤ αi ≤ C

Note that (5) is just a standard SVM with an identity ker-
nel. Thus, by representing each image as a vector of its
similarity (as given by the arbitrary region-based similarity
measure S) to all training images, we can use an ordinary
SVM.

We regard the problem as a two-class classification prob-
lem and use a GSVM to separate relevant images from
non-relevant images in the non-linearly transformed feature
space. The proposed learning algorithm is summarized in
Figure 2.

4. Unified Feature Matching

In UFM [4], an image is characterized by a set of seg-
mented regions each of which is represented by a set of



1. Retrieve the M most similar images to query im-
age by using similarity measure S.

2. While more RF iterations Do

(a) User marks the M images as relevant or
non-relevant

(b) R ← R
⋃

{marked M images}.

(c) Compute SVM by solving (5) on training
dataR.

(d) Compute the score f(x) of each database
image x using SVM decision function
f(x) =

∑|R|
i=1 αiyiKR(x,xi) + b.

(e) Retrieve the M highest-score database im-
ages.

Figure 2. GSVM-based RF learning algorithm

fuzzy features denoting color, texture, and shape character-
istics. The similarity between two images is then defined
as the overall similarity between two sets of fuzzy features.
To segment an image, it is first partitioned into blocks of
4x4 pixels. Then, a feature vector fi ∈ <

6 representing
color and texture properties is extracted for each block. The
first three features are the average color components and the
other three represent energy in high frequency bands of the
wavelet transforms [6, 17]. The C-means algorithm is then
used to cluster the feature vectors into C regions {Ri}

C
1 .

The number of regions C is adaptively chosen according
to a stopping criteria. A feature vector hj ∈ <

3 is then
extracted for each region Rj to describe its shape character-
istics. The shape features are normalized inertia [8] of order
1 to 3.

The color and texture properties of each region Rj are
represented by a fuzzy feature with a Cauchy membership
function µRj,f : <6 → [0, 1] defined as

µRj,f (f) =
1

1 +
(

||f−f̂j||
df

)α

where f̂j is the average of all feature vectors in Rj and

df =
2

C(C − 1)

C−1
∑

i=1

C
∑

k=i+1

||f̂i − f̂k||

is the average distance between cluster centers. The shape
characteristics of each region Rj are also represented by a
fuzzy feature with a Cauchy membership function µRj,h :
<3 → [0, 1] defined as

µRj,h(h) =
1

1 +
(

||h−hj||
dh

)α

where

dh =
2

C(C − 1)

C−1
∑

i=1

C
∑

k=i+1

||hi − hk||

is the average distance between shape features.
Let {(µRi,f , µRi,h)}

Cq

1 and {(µR′

i
,f , µR′

i
,h)}Ct

1 be the
fuzzy feature representations for a query and target image
respectively. The color and texture similarity between the
query and the target image is captured by the similarity vec-
tor

F = [lt1, l
t
2, · · · , l

t
Ct, l

q
1, l

q
2, · · · , l

q
Cq]

T

where

lti = S(µRi,f ,

Ct
⋃

j=1

µR′

j
,f )

=
df + d′f

df + d′f + minj=1,···,Ct ||f̂i − f̂ ′j ||

l
q
i = S(µR′

i
,f ,

Cq
⋃

j=1

µRj,f )

=
df + d′f

df + d′f + minj=1,···,Cq ||f̂ ′i − f̂j||

and similarly for the shape similarity, captured by similarity
vector H. The UFM measure for the query and target image
is then defined as

m(q,t) = (1− ρ)[(1− λ)wa + λwb]T F + ρwa
T H

where the normalized weight vectors wa and wb can be set
according to some region weighting heuristic, 0 ≤ λ ≤ 1
adjusts the importance of wa and wb, and 0 ≤ ρ ≤ 1 de-
termines the significance of F (i.e., color and texture simi-
larity) and H (i.e., shape similarity). For further details, see
[4].

5. Probabilistic Region Relevance Learning

A key factor in region-based CBIR systems that consider
all the regions to perform an overall image-to-image simi-
larity is the weighting of regions. The weight that is as-
signed to each region for determining similarity is usually
based on prior assumptions such as that larger regions, or re-
gions that are close to the center of the image, should have
larger weights. This is often inconsistent with human per-
ception. For instance, a facial region may be the most im-
portant when the user is looking for images of people while
other larger regions such as the background may be much
less relevant.



Based on the observation that regions in an image have
unequal importance for computing image similarity (See
Figure 3), we presented a probabilistic method inspired by
PFRL[18], probabilistic region relevance learning (PRRL)
in [9], for automatically capturing region relevance based on
user’s feedback. PRRL can be used to set region weights in
region-based image retrieval frameworks that use an overall
image-to-image similarity measure.
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Figure 3. Regions are unequal in their differential rele-
vance for computing similarity. Given that the user is look-
ing for images of people, region R1 is the most important,
followed by R2 and R3. Thus, the neighborhood of the
similarity metric should be elongated along the direction of
R1 and constricted along the direction of R3

5.1 Region Relevance Measure

Given a query image x = {Ri}
n
1 , where Ri repre-

sents the features extracted from a region in the image.
Let the class label y ∈ {1, 0} at x be treated as a ran-
dom variable from a distribution with the probabilities
{Pr(1|x), P r(0|x)}. Consider the function f of n argu-
ments

f(x)
.
= Pr(1|x) = Pr(y = 1|x) = E(y|x)

In the absence of any argument assignments, the least-
squares estimate for f(x) is simply its expected (average)
value

E[f ] =

∫

f(x)p(x)dx

where p(x) is the joint probability density. Now, suppose
that we know the value of x at a particular region Ri. The
least-squares estimate becomes

E[f |Ri] =

∫

f(x)p(x|Ri)dx

where p(x|Ri) is the conditional density of the other re-
gions. Because f(x) = 1 (i.e., the query image is always
relevant), (f(x) − 0) is the maximum error that can be
made when assigning 0 to the probability that x is rele-
vant when the probability is in fact 1. On the other hand,
(f(x) − E[f |Ri]) is the error that is made by predicting
E[f |Ri] to be the probability that x is relevant. Therefore,

[(f(x)− 0)− (f(x)−E[f |Ri])] = E[f |Ri]

represents a reduction in error between the two predictions.
Therefore, a measure of the relevance of region Ri for x

can be defined as

ri(x) = E[f |Ri] (6)

The relative relevance can then be used as the weight of
region Ri in a weighted similarity measure

wi =
eTri(x)

∑n

l=1 eTrl(x)
(7)

where T is a parameter that can be chosen to maximize
(minimize) the influence of ri on wi [9].

5.2 Estimating Region Relevance

Similarly to PFRL[18] for estimating feature relevance,
retrieved images with relevance feedback are used to esti-
mate region relevance. Let R = {(xj, yj)}

m
1 be the set

of cumulative retrievals for x. Let xj = {R′
j}

z
1. Let 0 ≤



1. Retrieve the M most similar images to query im-
age by using similarity measure S.

2. While more RF iterations Do

(a) User marks the M images as relevant or
non-relevant.

(b) R ← R
⋃

{marked K images}.

(c) Update weights of regions in query image
with (8) and (7) usingR.

(d) Retrieve the M most similar images to
query image by using similarity measure S.

Figure 4. Probabilistic region relevance learning

s(Ri,R
′
j) ≤ 1 denote the similarity between region Ri in x

and region R′
j in xj in a region-based CBIR system. Also,

let ŝ(Ri,xj) = maxj∈{1,2,···,z}(s(Ri,R
′
j)). We can use R

to estimate (6), hence (7). Note that E[f |Ri] = E[y|Ri].
However, since there may be no xj ∈ R for which R′

j = Ri

(i.e., no R′
j such that s(Ri,R

′
j) = 1), a strategy suggested

in [7] is followed and we look for data in the vicinity of Ri

(i.e., we allow s(Ri,R
′
j) to be smaller than 1). Thus, (7) is

estimated by

Ê[y|Ri] =

∑m

j=1 yj1(S(Ri,xj) > ε)
∑m

j=1 1(S(Ri,xj) > ε)
(8)

where 1(·) returns 1 if its argument is true, and 0 otherwise.
Thus, 0 ≤ ε ≤ 1 is an adaptive similarity threshold that
changes so that there is sufficient data for the estimation of
(6). The value of ε is chosen so that

∑m

j=1 1(S(Ri,xj) >

ε) = G, where G ≤ m. The probabilistic region relevance
learning algorithm is summarized in Figure 4.

6. Experimental Results

We tested the performance of the UFM and EMD sim-
ilarity measures with not RF learning, UFM with the pro-
posed GSVM-based learning algorithm (UFM+GSVM),
UFM with distance reweighting by PRRL (UFM+PRRL),
and SVM learning with kernel KGEMD (GEMD). The re-
trieval performance is measured by precision and recall,
which are defined as

precision =
number of relevant images retrieved

number of images retrieved

recall =
number of relevant images retrieved

number of relevant images in database

A subset of 2000 labelled images from the general-
purpose COREL image database was used as the data set.

0 1 2 3
Number of RF Iterations

0.4

0.5

0.6

0.7

0.8

0.9

P
re

ci
si

on

Corel Images

UFM+GSVM
UFM+PRRL
UFM
EMD
GEMD

Figure 5. Precision at different number of RF iterations.
The size of the retrieval set is 20

The region-based feature vectors of those images are ob-
tained with the segmentation algorithm used by UFM and
described in Section 41. There are 20 image categories, each
containing 100 pictures. Every image is used as a query
image. A uniform weighting scheme is used to set the re-
gion weights of each query and target images (i.e., wa =

wb = { 1
Cq+Ct

}
Cq+Ct

1 ). For UFM+GSVM, UFM+PRRL,
and GEMD, we simulated user’s feedback by carrying out
3 RF iterations for each query. Because the images in the
data set are labelled according to their category, it is known
whether an image in the retrieval set would be labelled as
relevant or non-relevant by the user.

In UFM+GSVM and GEMD, after each RF iteration, the
set of labelled cumulative retrieved images is used as train-
ing data and the resulting decision function is used to rank
database images. We used the LIBSVM [2] package for
creating the SVM. In UFM+PRRL, after each RF iteration,
PRRL is used to update the region weights of the query im-
age.

The average precision of the 2000 queries with respect
to different number of RF iterations is shown in Figure
5. Figures 6 through 9 show the precision-recall curves
after each RF iteration. We can observe that, even af-
ter only 1 RF iteration the RF learning methods (i.e.,
UFM+GSVM, UFM+PRRL, and GEMD) result in a very
significant performance improvement. Also, UFM+GSVM
performs much better than UFM+PRRL and GEMD.

1We would like to thank Yixin Chen for providing us with the segmen-
tation results
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7. Conclusions and Future Work

We presented a GSVM-based RF learning algorithm that
can be used in region-based CBIR systems that use ar-
bitrary similarity measures. The experimental results on
general-purpose images show convincingly the efficacy of
the proposed method in improving image retrieval perfor-
mance. Currently, for each query, the user’s RF is used to
learn a SVM and the learning process starts from ground
up for each new query. However, it is also possible to ex-
ploit the long term learning accumulated over the course of
many query sessions. This would be very beneficial spe-
cially in the initial retrieval set since, instead of ranking im-
ages based only on a region-based similarity measure, we
could make a more informed initial estimate of the rele-
vance of images to the user’s query concept. We plan to
investigate the possibility of incorporating long-term learn-
ing into the region-based CBIR framework. With GSVM,
there is ample opportunity to adapt other SVM-based CBIR
approaches to region-based image retrieval. This will also
be part of our future research.
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