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Abstract Relevance feedback (RF) is an iterative process
which improves the performance of content-based image
retrieval by modifying the query and similarity metric
based on the user’s feedback on the retrieval results. This
short-term learning within a single query session is called
intra-query learning. However, the interaction history of
previous users over all past queries may also be poten-
tially exploited to help improve the retrieval perfor-
mance for the current query. The long-term learning
accumulated over the course of many query sessions is
called inter-query learning. We present a novel RF
framework that learns one-class support vector ma-
chines (1SVM) from retrieval experience to represent the
set memberships of users’ high-level concepts and stores
them in a ‘‘concept database’’. The ‘‘concept database’’
provides a mechanism for accumulating inter-query
learning obtained from previous queries. By doing a
fuzzy classification of a query into the regions of support
represented by the 1SVMs, past experience is merged
with current intra-query learning. The geometric view of
1SVM allows a straightforward interpretation of the
density of past interaction in a local area of the feature
space and thus allows the decision of exploiting past
information only if enough past exploration of the local
area has occurred. The proposed approach is evaluated
on real data sets and compared against both traditional
intra-query-learning-only RF approaches and other
methods that also exploit inter-query learning.

1 Introduction

The rapid development of information technologies and
the advent of the World-Wide Web have resulted in a
tremendous increase in the amount of available multi-
media information. As a result, there is a need for
effective mechanisms to search large collections of mul-
timedia data, especially images. In traditional image
retrieval, keywords are manually assigned to images
and, for any particular query, images with matching
keywords are retrieved [15]. However, it is usually the
case that all the information contained in an image
cannot be captured by a few keywords. Furthermore, a
large amount of effort is needed to do keyword assign-
ments in a large image database and, because different
people may have different interpretations of image
contents, there will be inconsistencies [15].

In order to alleviate some of these problems, content-
based image retrieval (CBIR) was proposed. Some early
systems include those described in [7] and [12]. A CBIR
system extracts some features (such as color, shape, and
texture) from an image. The features are then the com-
ponents of a feature vector which makes the image
correspond to a point in an input space. In order to
determine closeness between two images, a similarity
measure is used to calculate the distance between their
corresponding feature vectors. However, because of the
gap between high-level concepts and low-level features
and the subjectivity of human perception, the perfor-
mance of CBIR systems is not satisfactory [15].

Relevance feedback (RF) attempts to overcome these
problems by gathering semantic information from user
interaction. In order to learn a user’s query concept, the
user labels each image returned in the previous query
round as relevant or not relevant. Based on the feed-
back, the retrieval scheme is adjusted and the next set of
images is presented to the user for labeling. This process
iterates until the user is satisfied with the retrieved
images or stops searching. Many approaches for
improving the performance of RF have been proposed
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[13, 14, 16]. In [14] a probabilistic feature relevance
learning (PFRL) method that automatically captures
feature relevance based on user’s feedback is presented.
It computes flexible retrieval metrics for producing
neighborhoods that are elongated along less relevant
feature dimensions and constricted along most influen-
tial ones. This technique has shown promise in a number
of image database applications. Recently, support vector
machines (SVM) have been applied to CBIR systems
with RF to significantly improve retrieval performance
[3, 9, 19].

We can distinguish two different types of information
provided by RF. The short-term learning obtained
within a single query session is intra-query learning. The
long-term learning accumulated over the course of many
query sessions is inter-query learning. By accumulating
knowledge from users, inter-query learning aims at
enhancing future retrieval performance. Thus, both
short and long-term learning are useful in CBIR.
However, in most current systems, all prior experience
from past queries is lost. That is, the system only takes
into account the current query session without using any
long-term learning.

In this paper, we propose a novel RF approach that
uses one-class SVM (1SVM) to capture users’ high-level
concepts and utilizes them as previous experience to be
used in future queries. For each query, the set member-
ship of the user’s high level concept is learned by training
a 1SVM. First, the user-labeled relevant images are
mapped into a nonlinearly transformed kernel-induced
feature space. Then, risk minimization is performed by
attempting to include most of those images into a
hypersphere (i.e., 1SVM) of minimum size. The 1SVM is
then stored in a ‘‘concept database’’, which is a reposi-
tory of inter-query learning and is used to improve the
retrieval performance on future queries. The use of ker-
nels allows the 1SVM to deal with the non-linearity of the
distribution of training images in an efficient manner,
while at the same time, providing good generalization.
In addition, the geometric view of 1SVM allows a
straightforward interpretation of the density of past
interaction in a local area of the feature space and thus
allows the decision of exploiting past information only if
enough past exploration of the local area has occurred.

The rest of this paper is organized as follows. Section
2 gives a brief introduction to SVMs and describes
1SVMs in detail. A description of our proposed
approach for exploiting both intra and inter-query
learning is presented in Sect. 3. In Sect. 4, we report
experimental results which confirm the effectiveness of
our method. Concluding remarks are given in Sect. 5.

1.1 Previous work

A few approaches [8, 11, 20] attempt inter-query learn-
ing (i.e., RF from past queries are used to improve the
retrieval performance of the current query). The initial
results from those approaches for inter-query learning

show a tremendous benefit in the initial and first itera-
tion of retrieval. Inter-query learning thus offers a great
potential for reducing the amount of user interaction by
reducing the number of iterations needed to satisfy a
query.

In [8] latent semantic analysis (LSI) [6] was used to
provide a generalization of past experience. LSI is an
important technique in information retrieval. It uses the
context (document) of a word usage to uncover its hid-
den (i.e., latent) semantics. LSI creates a semantic space
by performing a singular value decomposition on a
term-by-document matrix. In [8], the images in a data-
base are viewed as the fundamental vocabulary of the
system. The RF from each query is considered as a
document composed of many terms (images). Thus,
assuming that the terms of a document have a latent
semantic relationship, it is possible to use LSI to capture
inter-query learning.

Both [11] and [20] take the approach of complete
memorization of prior history. In [11] the correlation
between past image labeling is merged with low-level
features to rank images for retrieval. The model esti-
mates the semantic correlation between two images
based on their co-occurrence frequency (i.e., the number
of query sessions in which both images were labeled
relevant). Intuitively, the larger the co-occurrence fre-
quency of two images is, the more likely that they are
semantically similar. Given a query x2<d (i.e., the fea-
ture vector of a query image), the semantic similarity to
each image is initialized to its feature-based similarity.
Then, semantic similarities are iteratively updated based
on correlation with top-ranked images. Thus, images
having strong correlations with the top-ranked images
are likely to have a high semantic similarity with x, even
if their feature-based similarity is low [11].

In [20] the extra inter-query information is efficiently
encoded by adding a virtual feature (VF) to the feature
vector of an image. Initially, the VF of each image is
empty. Given a query x, the k nearest neighbor images
to it are retrieved and the user labels each of them as
relevant or not relevant. Then, a number from a system
counter is concatenated to the VFs of all user-labeled
relevant images to indicate that they deliver the same
concept as x. To determine relevance between x and
database images, the VF of x is computed as the con-
catenation of the VFs of all user-labeled relevant images
in the previous RF iteration. The VFs of x and the
database images are then used in a probabilistic dis-
similarity measure that dynamically adjusts the distance
between x and the database images [20]. One of the
shortcomings of this method is that it needs at least one
RF iteration and thus inter-query learning cannot be
used to improve the precision of the initial retrieval set.

2 Support vector machines

A support vector machine is a system for efficiently
training linear learning machines in a kernel-induced
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feature space while at the same time respecting the in-
sights provided by generalization theory and exploiting
optimization theory [4]. The objective of support vector
classification is to create a computationally efficient
method of learning ‘‘good’’ separating hyperplanes in a
high dimensional feature space, where ‘‘good’’ corre-
sponds to optimizing the generalization bounds given by
generalization theory [4].

Suppose we are given training data as a set of n
observations. Each observation is a pair {xi, yi} where
xi2<d and yi 2{�1, 1} is the corresponding class label.
Now suppose that we have a learning machine whose
task is to learn the mapping xi fi yi. The machine is
defined by a set of possible mappings x fi f(x, a) where
the functions x fi f(x, a) are labeled by the adjustable
parameters a. Thus, a learning machine is a family of
functions f(x, a) and a particular choice of a results in a
‘‘trained machine’’ [2]. If there are no restrictions on the
family of functions f(x, a), the trained machine may not
generalize well on unseen data (even when there is no
error in the training data). This problem is known as
overfitting and it drove the initial development of SVMs
[2]. Statistical learning theory, or VC (Vapnik–Chervo-
nenkis) theory, shows that the best generalization per-
formance can be obtained when the capacity of the
learning machine is restricted to one that is suitable to
the amount of available training data [2].

Suppose we have a learning machine that is a class of
separating hyperplanes ÆxÆw æ+b=0, where w2<d and
b2<, corresponding to decision functions f(x)=sign(ÆxÆw æ
+b). It can be shown that the optimal hyperplane (i.e., the
one that minimizes the generalization error or the bound
on the actual risk) corresponds to the one with maximal
margin of separation between the two classes [2]. The
optimal hyperplane has the smallest capacity (also known
as the lowest VC dimension). In order to find the optimal
separating hyperplane, a constrained quadratic optimi-
zation problem is solved. The solution has an expansion:

w ¼
Pn

i¼1
aixi: Those points for which ai>0 are called sup-

port vectors and lie closest to the hyperplane (see Fig. 1).
All other points have ai=0thus the support vectors are the
critical elements of the training set [2]. The final decision

function is of the form: f ðxÞ ¼ sign
�Pn

i¼1
aihx � xii

�
:

In order to generalize to the case where the decision
function is not linearly separable, SVMs first map the
data into some other (possibly infinite dimensional)
feature space F using a mapping F:<d fi <D, with D‡d
(see Fig. 2).

Both the quadratic optimization problem and the fi-
nal decision function depend on the data through dot
products in F (i.e, on functions of the form ÆF (xi)ÆF
(xj)æ). Therefore, we can use a kernel to avoid having to
perform an explicit mapping into the feature space. A
kernel calculates the dot product in the feature space of
the image of two points from input space, K (xi,
xj)=ÆF(xi)ÆF(xj)æ. Table 1 shows some commonly used
kernel functions. Distance in the feature space can be
calculated by means of the kernel function [4]. Given xi
and xj in input space, the corresponding distance in
feature space is:

distF ðxi; xjÞ2 ¼ jjUðxiÞ � UðxjÞjj2

¼ Kðxi; xiÞ � 2Kðxi; xjÞ þ Kðxj; xjÞ

This is known as the kernel trick and it allows SVMs to
implicitly project the original training data to a higher
dimensional feature space.

2.1 One-class SVM

In a one-class classification problem, data from only one
of the classes (the target class) are available. For in-
stance, user-labeled relevant images give us information
about the user’s high-level concept. Thus, in one-class
classification, the task is to create a boundary around
the target class such that most of the target data are
included while, at the same time, minimizing the risk of
accepting outliers (i.e., data that do not belong to the
target class) [18].

Table 1 Common kernels

Kernel Formula

Linear K (xi, xj) = ÆxiÆxjæ
Polynomial K (xi, xj) = (ÆxiÆxjæ+1)n

Gaussian Kðxi;xjÞ ¼ e�
xi�xjk k

r2

2

w
support vectors

optimal
hyperplane

Fig. 1 A simple linear SVM

φ

 Input Space                          Feature Space

Fig. 2 An SVM maps the training data nonlinearly into a higher
dimensional feature space via F. By the use of a kernel function,
the optimal separating hyperplane can be computed without
explicitly carrying out the map into the feature space
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The strategy that is followed in a 1SVM consists of
mapping the training data to a higher dimensional fea-
ture space and then attempting to include most of them
into a hypersphere of minimum size. We show how the
computation of the 1SVM from the user-labeled relevant
images is performed. Consider training data {x1, x2,� � �,
xn} where xi2<d is the feature vector of the ith user-
labeled relevant image in the retrieval set. Let
F:<d fi <D be a non-linear mapping from the original
(d dimensional) input space to the (D dimensional) fea-
ture space with D‡d. The strategy is to map the training
data to the higher dimensional feature space and include
most of them into a hypersphere of minimum size. That
is, the task is to minimize the following objective func-
tion (in primal form):

min
R2<;f2<n;a2<D

R2 þ C
Xn

i¼1
fi

with constraints that (almost) all the training data are
within the hypersphere:

jjUðxiÞ � ajj2 � R2 þ fi; fi � 0; i ¼ 1; 2; . . . ; n

where R and a are the radius and center of the hyper-
sphere, respectively (see Fig. 3). The parameter
0 £ C £ 1 is the soft–hard margin penalty and it gives
the trade-off between the size of the hypersphere and the
number of training data that can be included. By setting
partial derivatives to zero in the corresponding
Lagrangian we obtain the following expression for a:

a ¼
Xn

i¼1
aiUðxiÞ

Replacing partial derivatives in the Lagrangian and
noticing that a is a linear combination of the training
data (which allows us to use a kernel function), we
obtain the following objective function (in dual form)

min
a

Xn

i¼j¼1
aiajKðxi; xjÞ �

Xn

i¼j¼1
aiKðxi; xiÞ

with constraints:

0 � ai � C;
Xn

i¼1
ai ¼ 1

where K is an appropriate Mercer kernel. We use the
Gaussian kernel (see Table 1). A quadratic program-
ming method is used to find the optimal a values in the
objective function [18]. Given x in input space and hy-
persphere center a, their distance in feature space is:

distF ðx; aÞ¼ UðxÞ � ak k2

¼Kðx; xÞ�2
Xn

i¼1
aiKðx; xiÞþ

Xn

i¼j¼1
aiajKðxi; xjÞ

Also, x falls inside the hypersphere when this distance is
smaller than or equal to the radius:

distF ðx; aÞ � R2

3 Proposed approach

The approach that is used for selecting the set of images
that is presented to the user (i.e., the retrieval set) is based
on exploiting both intra and inter-query learning. Fig-
ure 4 shows a diagram of the proposed method. At the
first stage, the user submits a query image x to the system.
Let k be the size of the retrieval set and 0 £ wintra £ 1 be
the intra-query learning weight. The intra-query learning
is exploited by including (wintra)k nearest neighbor images
to x in feature space into the retrieval set. The remaining
(1�wintra)k images in the retrieval set are obtained by
exploiting the accumulated inter-query learning in the
‘‘concept database’’. Thus, the ratio of intra to inter-query
learning that is used in processing a query is
wintra:(1�wintra). We now explain how the remaining
(1�wintra)k ‘‘inter-query learning’’ images are selected.

Using 1SVMs we obtain set membership knowledge
(about previous users’ high-level concepts), which can be
visualized as hyperspheres in feature space. In order to
integrate this prior experience with the current query x, a
fuzzy classification of x into the existing regions of sup-
port (i.e., 1SVMs) is performed. Thus, the ‘‘concept
database’’ is searched and it is determined whether x falls
into any of the accumulated 1SVMs. Because it is very
common for an image to be ascribed into many different
concepts, we expect to have queries that fall into many
hyperspheres. One possible way of exploiting inter-query
learning would be to perform a hard classification by
selecting (1�wintra)k nearest neighbor images to the clos-
est hypersphere’s center (i.e., closest prototype). How-
ever, this is not a very good strategy since a querymay be a
member of several concept sets (i.e., it may fall into many
hyperspheres). Thus, it may as well be ascribed to the
concept corresponding to any one of the other 1SVMs.
Furthermore, a query may be ascribed to a combination
of different concepts.

a
R

Fig. 3 The hypersphere containing most of the training data
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The results of experiments conducted in [1] for
learning users’ text preferences suggest that, for simple
queries (i.e., queries that can be ascribed to one con-
cept), a purely exploitative strategy delivers good per-
formance. However, for complex queries (i.e., queries
that can be ascribed to more than one concept), there is
a trade-off between faster learning of the user’s query
concept and the delivery of more relevant documents.
Therefore, instead, we use the ideas from possibilistic
cluster analysis [10] and assign a degree of membership
to each one of the 1SVMs (i.e., to each cluster)
according to the degree by which x can be ascribed to its
particular concept.

Given a set of points, the fuzzy c-means algorithm
searches for an optimal set of clusters. The clusters are
represented by their corresponding centers and each
point has a degree of membership in each cluster which
models the degree of the point belonging to the cluster
[10]. In our case, the set of clusters (in the form of
1SVMs) is formed by the historical interaction of users
with the system. We then use the following membership
function to assign degrees of membership to the h hy-
perspheres into which x falls:

lðx; siÞ ¼
1

Ph

j¼1

distF ðx;aiÞ
distF ðx;ajÞ

; i ¼ 1; 2; . . . ; h

where si is the ith hypersphere with corresponding center
ai. Therefore, the degree of membership of x into a
1SVM is based on the relative distances between x and

the centers of all hyperspheres into which x falls. Sup-
pose x falls into h hyperspheres. If ci denotes the concept
that is embodied by the ith hypersphere then the belief
(or our degree of confidence) that x is delivering concept
ci is equal to l(x, si).

To form the retrieval set, sample representative ima-
ges from each hypersphere into which x falls are in-
cluded. The number of representatives that a particular
concept ci has in the retrieval set is proportional
to l(x, si). Thus, if N(ci) denotes the number of images
of concept ci that appear in the retrieval set then
N(ci)<N(cj) whenever l(x, si)<l(x, sj). Because x may
fall into many hyperspheres but only (1�wintra)k ‘‘inter-
query-learning’’ images are to be included in the
retrieval set, priority is given to hyperspheres with
higher l(x, si). Thus, after (1�wintra)k images are
selected, the remaining hyperspheres with smaller
l(x, si) are ignored.

The retrieval set is thus formed by exploiting both
intra and inter-query learning. Then, the user evaluates
the relevance of images in the retrieval set. The user-
labeled relevant images are used as training data for a
1SVM. The center of the resulting hypersphere becomes
the new query for the second round of RF and this
process continues until the user is satisfied with the re-
sults or quits. When the session is over, all the RF
provided by the user is used as training data for the
1SVM that is stored in the ‘‘concept database’’. Our
algorithm is summarized below.

T ‹ Ø

SAVE

SAVE

             Fuzzy

            Search

       Feedback

            1SVM

      More RF

     Current user’s

      feedback

      computation

        iteration

      classification

     iterations ?

YES  NO

Concept database 

    Image database

H–M–tree

   I–M–tree

 Query  x

D={x1, x2, ..., xn}

User’s feedback ={(x1, 1), (x2, 0), ..., (xn, 1)}

M = {(s1, µ(x, s1)), (s2, µ(x, s2)), ..., (sh, µ(x, sh))}

x = center of hyper–sphere

Hyper–sphere description

Fig. 4 System diagram
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1. Let x be the current query
2. Search the concept database; find hyperspheres into

which x falls
S ‹ {s1, s2,...,sh}

3. Do a fuzzy classification of x into S
M ‹ {l (x,s1),l (x,s2),...,l (x,sh)}

4. Form the retrieval set D
D ‹ {(wintra)k nearest neighbor images to x}
D ‹ D [ {(1�wintra)k images based on M}

5. User marks images in D as relevant or non-relevant
T ‹ T[{user-labeled relevant images}
Use T to compute 1SVM

6. While more RF iterations Do
x ‹ center of resulting 1SVM
go to 2

7. Insert 1SVM into concept database

The M-tree [5] data structure is used for efficient
searching of nearest-neighbor images in feature space.
An M-tree is a paged, balanced, and dynamic tree. It
provides an efficient platform for the execution of
multi-dimensional similarity queries using an arbitrary
metric. For details, see [5]. We use M-trees for efficient
searching of both historical information and images in
the database. The image M-tree (I-M-tree) contains all
the images in the database and the history M-tree
(H-M-tree) contains the learned 1SVMs (i.e., the
historical hyperspheres).

4 Experimental results

We have implemented the VF approach [20], the statis-
tical correlation technique (SC) [11], and our proposed
method (1SVM). Those three approaches exploit inter-
query learning. Their response with respect to different
amounts of experience (data level) is investigated. We
also compare the performance of our method against
that of traditional intra-query-learning-only RF ap-
proaches. For that purpose, we have also implemented
the PFRL [14] method. The retrieval performance is

measured by precision. Precision measures the ability to
retrieve only relevant images and is defined as

precision ¼ Number of relevant images retrieved

Number of images retrieved

The following data sets were used for evaluation:

Texture The texture data set, obtained from MIT
Media Lab at ftp://whitechapel.media.mit.edu/pub/Vis-
Tex. There are 40 different texture images that are
manually classified into 15 classes. Each of those images
is then cut into 16 non-overlapping images of size
128·128. Thus, there are 640 images in the database.
The images are represented by 16-dimensional feature
vectors. We use 16 Gabor filters (two scales and four
orientations). Sample images are shown in Fig. 5.

Letter The letter data set consists of 20,000 character
images, each represented by a 16-dimensional feature
vector. There are 26 classes of the two capital letters O
and Q. The images are based on 20 different fonts with
randomly distorted letters.

To determine the free parameters, a tenfold cross-
validation was performed for the Texture and Letter
data sets. Each data set was divided into ten partitions.
Each partition in turn was left out and the other nine
were used to determine values for the free parameters.
The left out partition was then used to test the algo-
rithm. The values reported are the average of the ten
tests. We make no claim on using optimal values for
Letter as the parameters were selected after a very coarse
sampling.

Figures 6 and 7 show the precision in the initial
retrieval set (i.e., with no iterations of RF) with respect
to different data levels. The data level is the amount of
accumulated inter-query learning (i.e., number of que-
ries processed) relative to the number of images in the
data set. In order to create the initial retrieval set, a
traditional intra-query-learning-only RF approach

Fig. 5 Sample Images from
MIT Texture database
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performs a k-nearest-neighbor (knn) search. Both VF
[20] and PFRL [14] require at least one iteration of RF.
Thus, for the initial retrieval set, they have the same
performance as knn. As we can observe from those fig-
ures, precision in the initial retrieval set can be drasti-
cally improved by integrating inter-query learning. Also,
precision keeps improving as the data level increases.
This results in reduction of the number of RF iterations
needed to satisfy a query. Thus, from the user’s point of
view, it is very beneficial, because users cannot stand too
many RF iterations. On the other hand, if we use solely
a knn search, there is no gain on the initial retrieval
precision along the number of processed queries. From

those figures we can observe that, with low data levels,
there may be an initial decrease in precision. In our
method, this is because the retrieval set is formed based
on a fixed ratio of intra to inter-query learning. Both VF
[20] and SC [11] use a similar concept, the ‘‘maximal
distance adjustment’’ and the ‘‘semantic weight’’
respectively, which is also based on a fixed weighting of
inter-query learning. Intuitively, initially we would like
to rely heavily on current intra-query learning since, at
the beginning, there is not much historical information.
Similarly, we would like to increase the exploitation of
inter-query learning as more queries are processed and
experience accumulates. Thus, we could adaptively
change the ratio of intra to inter-query learning so that
at the beginning, when there is little historical informa-
tion, wintra is large and, as experience accumulates, it
becomes increasingly smaller (i.e., we rely more on inter-
query learning). In our method, the optimal ratio of
intra to inter-query learning was defined as that resulting
in highest precision with large data levels and was
determined to be 0.25:0.75. Note that choosing 1:0 as the
ratio of intra to inter-query learning is the same as using
an intra-query-learning-only 1SVM approach. Thus, our
method outperforms 1SVM approaches that do not ex-
ploit inter-query learning.

Figures 8 and 9 show the precision after one iteration
of RF with respect to different data levels. As we can
observe from those figures, precision increases after one
RF iteration. The amount of improvement obtained
when going from one to two RF iterations is much
smaller. This is a desired property since users do not
want to perform many RF iterations. We can also ob-
serve that, with at least one RF iteration, 1SVM and VF
[20] have similar performance. On the other hand, our
approach can provide improvement in the initial re-
trieval set. It can also be seen that, as the data level
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increases, both methods result in a very significant per-
formance improvement over PFRL [14]. On the other
hand, with PFRL [14], there is no gain in retrieval
precision along the number of processed queries. As a
result, the precision stays at a fixed value. This demon-
strates that methods which exploit both short and
long-term information perform better than intra-query-
learning-only techniques.

We also use recall to investigate the performance of
our method against different amounts of experience.
Recall measures the ability to retrieve all relevant images
in the database and is defined as:

recall ¼ Number of relevant images retrieved

Number of relevant images in database

Figure 10 shows the precision–recall graph of our pro-
posed method for different data levels. Both high recall
and high precision are desired, though not often obtain-
able. The values are the average over 64 random queries
from Texture. From that figure we can observe that
increasing the data level has the desirable effect of pulling
the precision–recall curve towards the upper right.

As a last illustration, Figure 11 shows a particular
retrieval result obtained by performing a nearest-neigh-
bor search in feature space on random query from the
Texture data set. A retrieval precision of 0.25 is
achieved. This shows the inconsistency between content-
based and semantic similarity. In contrast, Figure 12
shows the retrieval results obtained with our method. In
this case, a retrieval precision of 0.95 is achieved. This
illustrates that exploiting inter-query learning can dra-
matically help to reduce the semantic gap and improve
retrieval performance.

We can learn from these results that the image retrieval
performance is constantly improved by integration of

inter-query learning. Furthermore, performance can be
improved in the initial retrieval set where a traditional
intra-query-learning-only approach would require at
least one iteration of RF to provide some improvement.
Thus, user interaction can be reduced by reducing
the number of iterations that are needed to satisfy a
query.

5 Conclusions and future work

This paper presented a new approach for incorporating
inter-query learning into an RF system to improve im-
age retrieval performance. By learning 1SVM from re-
trieval experience we can represent the set memberships
of users’ high level concepts and store them in a ‘‘con-
cept database’’. The ‘‘concept database’’ provides a
mechanism for accumulating inter-query learning ob-
tained from previous queries. By doing a fuzzy classifi-
cation of a query into the regions of support represented
by the 1SVMs, past experience is merged with current
intra-query learning. The geometric view of 1SVM
allows a straightforward interpretation of the density
of past interaction in a local area of the feature space
and thus allows the decision of exploiting past infor-
mation only if enough past exploration of the local area
has occurred. Experimental results on real data sets
demonstrate the effectiveness of our proposed method.
To extend our research, some challenging problems need
to be further investigated:

– How to combine or merge hyperspheres (i.e., user’s
high level concepts)? Currently, inter-query learning
is represented by a constantly growing number of
(possibly overlapping) 1SVMs (i.e., regions) in the
feature space. Thus, clustering and summarizing
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may be desirable when the amount of inter-query
learning (i.e., the size of the ‘‘concept database’’) is
very large.

– How to adaptively change the ratio of intra to inter-
query learning? As was observed, a fixed ratio for
combining intra and inter-query learning may result in
a drop in performance at some data level.

We plan to study these problems in our future
research.
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