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Abstract: - We present an extension of previous work on improving the initial image retrieval set by exploiting 
both intra and inter-query learning. In most Content-Based Image Retrieval (CBIR) systems based on 
Relevance Feedback (RF), all prior experience is lost whenever a user generates a new query, thus inter-query 
information is not used. In previous work, a system was developed that learns One-class Support Vector 
Machines (1SVMs) from retrieval experience to represent the set memberships of users' query concepts. By 
doing a fuzzy classification of a query into the regions of support represented by the 1SVMs, past experience 
is merged with current intra-query learning. To satisfy a query, intra and inter-query knowledge are combined 
based on a fixed ratio. Experimental results confirmed that higher precision is obtained by using both current 
and historical information. However, a fixed ratio for combining intra and inter-query knowledge that is 
independent of past experience results in large performance drops at some data level. In this paper we extend 
this previous approach by incorporating Reinforcement Learning (RL) for adaptively changing the ratio of 
intra to inter-query knowledge that is used to satisfy a query. We also use M-trees as a flexible indexing 
structure for the efficient search of historical information and database images. Experimental results against a 
real data set show the proposed approach greatly reduces the large drops in precision that were observed in the 
original system. 
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1   Introduction 
A Content-Based Image Retrieval (CBIR) system 
determines closeness between images by computing 
a distance between their feature vectors. The main 
problem encountered by CBIR systems is the gap 
between the high-level concept that the user is 
looking for and the low-level features extracted from 
the images [14]. Through user interaction during the 
search process, Relevance Feedback (RF) helps to 
alleviate this problem. Several approaches for 
improving the performance of RF have been 
proposed [13, 14]. In [13], a Probabilistic Feature 
Relevance Learning (PFRL) method that 
automatically captures feature relevance based on 
user's feedback is presented. It computes flexible 
retrieval metrics for producing neighborhoods that 
are elongated along less relevant feature dimensions 
and constricted along most influential ones. This 
technique has shown promise in a number of image 
database applications. 
 Recently, Support Vector Machines (SVM) [2] 
have been applied to CBIR systems with RF to 
significantly improve retrieval performance [3, 4, 9, 

15, 17]. We can distinguish two different types of 
information provided by RF. The short-term 
learning obtained within a single query session is 
intra-query information. The long-term learning 
accumulated over the course of many query sessions 
is inter-query information. By accumulating 
knowledge from users, inter-query learning aims at 
enhancing future retrieval performance. Thus, both 
short and long-term learning are useful in CBIR. 
However, in most current systems, all prior 
experience from past queries is lost. That is, the 
system only takes into account the current query 
session without using any long-term learning. 
 A few approaches [6, 8, 11, 12, 18] perform 
inter-query learning (i.e., RF from past queries are 
used to improve the retrieval performance of the 
current query). In [12], the log files of the Viper 
system are used to perform feature relevance 
weighting. Both [11] and [18] perform a complete 
memorization of prior history and the correlation 
between past image labeling is merged with low-
level features to rank images for retrieval. The model 
estimates the semantic correlation between two 



images based on their co-occurrence frequency (i.e., 
the number of query sessions in which both images 
were labeled relevant). Intuitively, the larger the co-
occurrence frequency of two images is, the more 
likely that they are semantically similar. In [8] 
Latent Semantic Analysis (LSI) is used to provide a 
generalization of past experience. LSI is an 
important technique in information retrieval. It uses 
the context (document) of a word usage to uncover 
its hidden (i.e., latent) semantics. LSI creates a 
semantic space by performing a singular value 
decomposition on a term-by-document matrix. In 
[8], the images in a database are viewed as the 
fundamental vocabulary of the system. The RF from 
each query is considered as a document composed of 
many terms (images). Thus, assuming that the terms 
of a document have a latent semantic relationship, it 
is possible to use LSI to capture inter-query learning. 
In [18] the extra inter-query information is 
efficiently encoded as virtual features. The initial 
results from those approaches for inter-query 
learning show an enormous benefit in the initial and 
first retrieval iterations. Therefore, inter-query 
learning has a great potential for decreasing the 
amount of user feedback by reducing the number of 
interactions needed to satisfy a query. 
 This paper is an extension of previous work on 
improving the initial image retrieval set by 
exploiting both intra and inter-query learning. In [6], 
a system is presented that uses One-class Support 
Vector Machines (1SVM) to represent the set 
memberships of users' query concepts. By doing a 
fuzzy classi fication of a query into the regions of 
support represented by the 1SVMs, past experience 
is merged with current intra-query learning. To 
process a query, intra and inter-query knowledge are 
combined based on a fixed ratio. We extend this 
approach by incorporating an on-line Reinforcement 
Learning (RL) rule for the automatic adaptation of 
the ratio of intra and inter-query knowledge to be 
used based on the amount of accumulated historical  
information in a local region. M-trees [5] are also 
incorporated for the efficient search of both 
historical information and database images. 
 The rest of this paper is organized as follows. 
Section 2 gives a brief overview of the original  
image retrieval system with 1SVMs for representing 
regions of support presented in [6]. In Section 3, we 
give a brief description of the M-tree [5] data 
structure, which is used to perform an efficient 
search of both historical information and images in 
the database. Section 4 gives a brief introduction to 
RL and a description of the proposed learning rule 
for the automatic adaptation of the intra and inter-
query knowledge ratio. In Section 5, we present the 

results of experiments conducted with the extended 
approach, which show significantly improved 
performance compared to the original system. 
Concluding remarks are given in Section 6. 
 
 

2   Previous Work 
The image retrieval system presented in [6] uses 
1SVMs to model set membership knowledge about 
users' query concepts. The images marked as 
relevant by the user during a RF iteration are used as 
training data for a 1SVM. A 1SVM maps the 
relevant images into a nonlinearly transformed 
kernel-induced feature space and performs risk 
minimization by attempting to include most of those 
images into a hyper-sphere of minimum size. The 
use of kernels allows the 1SVM to deal with the 
non-linearity of the distribution of training images in 
an efficient manner, while at the same time, 
providing good generalization. The geometric view 
of a 1SVM allows a straightforward interpretation of 
the density of past interaction in a local area and 
thus allows the decision of exploiting past 
information only if enough past exploration of the 
local area has occurred. 
 In order to integrate prior experience (in the form 
of 1SVMs) with a user’s current query, a fuzzy 
classification of the user’s query into the existing 
concepts (i.e., regions of support) is performed. 
When a query x ∈ ℜd is submitted, it is determined 
whether x falls into one of the existing 1SVMs. 
Possibil istic cluster analysis [10] is used to assign a 
degree of membership to each of the 1SVMs (i.e., to 
each cluster) according to the degree by which x can 
be ascribed to that particular concept. The following 
membership function, µ, is used to assign degrees of 
membership to the n hyper-spheres into which x 
falls [10]. 
 

µ(x,ai) = 1/Σ(||Φ(x)- ai||
2 / ||Φ(x)- aj||

2)  
 
where ai is the center of the i th hyper-sphere and Φ: 
ℜd 

�
 ℜD, with D > d. Therefore, the degree of 

membership of x into a 1SVM is based on the 
relative distances between x and the centers of all 
hyper-spheres into which x falls.  
 The approach that is used for selecting the set of 
images that is presented to the user (i.e., the retrieval 
set) is based on exploiting both intra and inter-query 
learning. To fully exploit the RF information 
provided by the current user (i.e., the intra-query 
knowledge), the user's feedback is used to train a 
hyper-sphere with center acurrent. A fixed value 0 ≤ w 
≤ 1, which signi fies our confidence that acurrent 



captures the user's query concept, is assigned to 
µ(x,acurrent). To combine this knowledge with 
accumulated experience, the µ(x,ai) of each hyper-
sphere into which x falls is scaled to the range 0 to 
(1-w) and, in order to form the retrieval set, sample 
representative images from each hyper-sphere into 
which x falls (including acurrent ) are selected. The 
nearest neighbor images to a hyper-sphere's center 
(i.e., to a concept's prototype) are considered to be 
representative of that concept. The number of 
images that a particular concept (i.e., a particular 
hyper-sphere) contributes to the retrieval set is 
proportional to its µ(x,ai). Thus, the ratio of intra to 
inter-query knowledge that is used in processing x is 
w:(1-w). Figure 1 shows a block diagram of the 
original system. 
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Figure 1: Original System Diagram 
 
 

3 M-Tree 
Many data structures (B-tree, for example) have 
been proposed for the efficient managing of one-
dimensional data in traditional database systems. 
However, because of the rapid development of 
multimedia database systems during the past decade, 
the efficient manipulation of multi-dimensional data 
is vital [5]. In particular, there is an urgent need for 
indexing techniques that support the efficient 
execution of similarity queries. Therefore, a number 
of data storage and indexing techniques (such as the 
R-tree [7]) have been proposed. However, most of 
those techniques suffer from the curse of 
dimensionality [1], a phenomenon in which 
performance degrades as the number of dimensions 
increases. Metric trees are a general approach to the 

similarity indexing problem. In order to organize 
and partition the search space, they only consider 
relative distances between objects. They just require 
that the distance function is a metric (i.e., that it 
satisfies the symmetry, non negativity, and triangle 
inequality properties) [5]. An M-tree is a paged, 
balanced, and dynamic tree. It provides an efficient 
platform for the execution of multi-dimensional 
similarity queries using an arbitrary metric [5]. We 
use M-trees for the efficient search of both historical 
information and images in the database. The image 
M-tree (I-M-tree), contains all the images in the 
database and the history M-tree (H-M-tree) contains 
the learned 1SVMs (i.e., the historical hyper-
spheres). Figure 2 shows a diagram of the proposed 
extended system. 
 

 
Figure 2: Extended System Diagram 
 
 

4 Reinforcement Learning 
In RL [16], an agent learns how to adapt to its 
environment by finding optimal actions for the 
current state. After taking an action, the agent 
receives a reward, which indicates the goodness of 
taking the action in that particular state. The agent's 
objective is to maximize the temporal discounted 
future reward (the value). This can be achieved by 
improving the strategy for selecting an action in 
each state (the policy). At each step of the learning 
task, the agent perceives its current state st and, 
following the policy π, selects an action at. After 
taking this action, the agent receives a reward r t and 
is transferred to the next state st+1. The reward is 
used to update the value function that can be either a 
state-value function Vπ(s), which indicates how 



good it is for the agent to be in state s, or an action-
value function Qπ(s,a), which indicates how good it 
is to perform action a in state s. Informally, Vπ(s)  is 
the expected total future reward when starting in 
state s and following the policy π thereafter, 
similarly for Qπ(s,a). The goal is to find the optimal 
policy π* (i.e., the optimal mapping from each state s 
and action a to the probability of taking action a 
when in state s). For each state and state-action pair, 
V*(s), and Q*(s,a) are the largest expected future 
reward respectively. Once we have V*(s) or Q*(s,a), 
it is easy to determine the optimal policy π*. Given a 
complete knowledge of the environment dynamics, 
V*(s) or Q*(s,a) can be easily obtained by a 
Dynamic Programming (DP) method. Usually, 
however, we do not have a complete knowledge of 
the environment [16]. 
 Monte Carlo (MC) methods can learn directl y 
from experience without needing a model of the 
environment's dynamics. They estimate the value of 
a state or a state-action pair simply by averaging the 
rewards obtained after visits to that state or after 
taking an action in a state respectively. By the Law 
of Large Numbers, as the number of observed 
rewards increases, the average should converge to 
the expected value. The state-action update rule for a 
MC method is 
 

Q(s,a) = average(Rewards(s, a)) 
 
where Rewards(s, a) is the set of all historical  
rewards obtained after taking action a in state s. As 
we can observe, the estimates for each state or state-
action pair are independent. That is, unlike DP 
methods, the estimate of one state or state-action 
pair does not depend on the estimate of any other 
state or state-action pair [16]. 
 
 
4.1   Adaptive Weighting 
Having a fixed ratio for the combination of intra and 
inter-query knowledge that is insensitive to 
historical information is not a good approach. 
Intuitively, initially we would like to rely heavily on 
current intra-query learning since, at the beginning, 
there is not much historical information. Similarly, 
we would like to increase the exploitation of inter-
query knowledge as more queries are processed and 
experience accumulates. As it was observed in [6], 
using a fixed ratio for the combination of intra and 
inter-query knowledge results in a large drop in 
performance at some data level. In order to 
overcome this problem, we use RL to learn a rule for 
adapting this ratio. 

 The problem of determining the amount/weight 
of intra and inter-query information to be used for a 
particular query can be naturally expressed as a RL 
problem. Indeed, we have an agent operating in an 
environment - images in feature space. The agent 
interacts with the set of images at discrete time 
steps. At each time step, the state of the environment 
can be modeled by the density of historical 
information in different regions of the feature space 
(i.e., by the number and location of hyper-spheres), 
and by the location of the input query. The agent 
receives a representation of the environment state 
and selects an action - choose the ratio of intra to 
inter-query knowledge. At the next time step, the 
agent receives a numerical reward from the 
environment - the percentage of relevant images in 
the retrieval set (i.e., the precision). The goal of the 
agent is to include the largest number of relevant 
images in the retrieval set as quickly as possible. In 
order to achieve this goal, the agent should learn an 
adaptive retrieval strategy that is sensitive to the 
density and location of historical information. 
 In this paper, we approximate the state of the 
environment with a representation that is based only 
on quantitative information about historical data. 
That is, the state of the environment is based only on 
the amount of available historical information. We 
learn a rule that, for each query, adapts the intra to 
inter-query knowledge ratio based on the number of 
hyper-spheres into which the query falls. The RL 
method is used to learn the measured states (i.e., the 
number of hyper-spheres h that a particular query 
falls into); the actions are setting the amount of 
intra-query knowledge weight w to either one of n 
values in the range 0 to 1. The total number of 
different states is thus h + 1, including the case of a 
query that does not fall into any hyper-sphere. 
Therefore, the Q(s, a) table to be learned consists of 
(h + 1)n state-action pairs. The reward r is equal to 
the precision obtained after processing the query 
with the selected ratio. In future work, we will 
develop a more complex state representation that 
also encapsulates the particular region in feature 
space into which the query falls. 
 
 
4.2   Learning the Adaptation Rule with a   

MC Method 
The number of hyper-spheres into which a particular 
query falls (i.e., the state) is completely independent 
from the number of hyper-spheres that the previous 
query fell into (i.e., the previous state). That is, the 
policy should be memory-less in the sense that the 
next action to be taken depends only on the current 



state. In other words, we need to have a reactive 
policy that chooses an action based only on the 
current observation. Therefore, for our problem, it is 
natural to use a MC method in which the estimates 
for each state or action-state pair are independent. 
We use the following modified MC algorithm. 
 
 For all s ∈ S, a ∈ A(s): 
 Initialize Q(s,a) arbitrarily 
 Rewards(s,a) = empty l ist 
 While more queries: 
 
1. Generate an episode by processing next query 
2.  Observe st (number of hyper-spheres into 

which the query falls) 
3. Choose at from st using policy derived from 

Q(st, at) using an ε-greedy selection scheme 
4. Observe r t (precision) 
5. Append r t to Rewards(st ,at) 
6. Q(st, at) = average(Rewards(st ,at)) 

 
5   Experimental Results 
We compare the performance of the extended 
approach against that of the original system in terms 
of retrieval performance. The retrieval performance 
is measured by precision, which is defined as 
precision = number of relevant images retrieved / 
number of images retrieved. 
 The Letter database consists of 20,000 character 
images, each represented by a 16-dimensional 
feature vector. There are 26 classes of the two 
capital letters O and Q. The images are based on 20 
different fonts with randomly distorted letters. To 
determine the free parameters, a ten-fold cross-
validation was performed. Each data set was divided 
into ten partitions. Each partition in turn was left out 
and the other nine were used to determine values for 
the free parameters. The left out partition was then 
used to test the algorithm. The values reported are 
the average of the ten tests. Both the original and 
extended approaches were then evaluated with 
different amounts of experience (data level) using a 
Gaussian kernel with width s = 10, and a 
misclassification penalty C = 1/pn, where n is the 
number of training images, with p = 0.001. The 
number of images in the retrieval set k = 20. For the 
original system, the fixed amount of intra-query 
learning w ∈{ 0.1, 0.25, 0.50, 0.75, 0.95} . The MC 
exploration parameter ε = 0.1 in the modified 
approach. Figures 3 and 4 show the precision of the 
initial retrieval (i.e., with no RF iterations) with 
respect to different data levels for the original and 
modi fied systems, respectively. The data level is the 
number of hyper-spheres relative to the number of 

images in the database. From Figure 3, we can 
observe that using the original approach on low data 
levels results in initial retrieval performance worse 
than KNN retrieval, which is the approach to create 
the initial retrieval set taken by RF methods that do 
not use historical information. Figure 4 shows the 
large improvement obtained by introducing an 
adaptive ratio of intra to inter-query knowledge 
based on the amount of historical data in the region 
local to the query. In this case, the (comparatively 
much smaller) initial decrease in performance is due 
to the early stage of learning. As we can observe 
from those figures, precision in the initial retrieval 
set can be drastically improved by integrating inter-
query learning. This results in a reduction on the 
number of RF iterations that are needed to satisfy a 
query. Thus, from the user's point of view, it is very 
beneficial since users cannot stand too many RF 
iterations. 
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Figure 3: Initial Retrieval Set, Fixed Weighting 
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Figure 4: Initial Retrieval Set, Adaptive Weighting  



6   Conclusions 
This paper presented an extension of previous work 
on incorporating historical information into a 
Relevance Feedback (RF) system to improve image 
retrieval performance. In previous work, a system 
was developed that learns One-class Support Vector 
Machines (1SVM) from retrieval experience to 
represent the set memberships of users' query 
concepts. By doing a fuzzy classification of a query 
into the regions of support represented by the 
1SVMs, past experience is merged with current 
intra-query learning. In this paper, we presented an 
extension of this system that incorporates 
Reinforcement Learning (RL) for adaptively 
changing the ratio of intra to inter-query knowledge 
that is used in processing a query. It also 
incorporates M-trees for the efficient search of both 
historical information and images in the database. 
Initial investigation suggests that an adaptive 
weighting scheme that is sensitive to the amount of 
historical information in a local region can 
overcome the large drops in performance that were 
observed in the original system. Our future research 
will focus on methods for combining or merging 
1SVMs (i.e., users' concepts). This may be desirable 
when the amount of historical information is very 
large. We will also concentrate on developing a 
better approximation to the state of the environment 
for learning an adaptive weighting rule with RL. 
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