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ABSTRACT

Relevance feedback is an attractive approach to develop-
ing flexible metrics for content-based retrieval in image and
video databases. Large image databases require an index
structure in order to reduce nearest neighbor computation.
However, flexible metrics can alter an input space in a highly
nonlinear fashion, thereby rendering the index structure use-
less. Few systems have been developed that address the ap-
parent flexible metric/indexing dilemma. This paper pro-
poses kernel indexing to try to address this dilemma. The
key observation is that kernel metrics may be non-linear and
highly dynamic in the input space but remain Euclidean in
induced feature space. It is this linear invariance in fea-
ture space that enables us to learn arbitrary relevance func-
tions without changing the index in feature space. As a re-
sult, kernel indexing supports efficient relevance feedback
retrieval in large image databases. Experimental results us-
ing a large set of image data are very promising.

1. INTRODUCTION

Relevance feedback (RF) is an attractive retrieval technique
that allows a user to refine retrieval performance. A set of�

nearest images to the query is first computed. The user
then interacts with the retrieval algorithm by labeling the re-
trieved images as relevant or irrelevant. The algorithm dy-
namically adjusts its retrieval mechanism from the labeled
images. This process repeats until the user is satisfied with
the results. Relevance feedback retrieval has shown promise
in a variety of image database applications [1, 2, 3, 4].

Formulating RF retrieval as a K nearest neighbor (NN)
search allows such retrieval procedures to exploit highly
customized retrieval metrics. However, NN search requires
direct distance computation between the query and every
image in the database. As such, the amount of computa-
tion required can be daunting when the image database is
large. This demands effective strategies for database index-
ing or clustering in order to achieve greater computational
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efficiency. An index structure is optimized with respect to a
given distance. Optimal retrieval demands dynamic metrics.
However, when the metric is modified the index structure is
no longer optimal and may not even be valid.

Few systems have been developed that address the ap-
parent flexible metric/indexing dilemma in relevance feed-
back retrieval. While approximation based index techniques
[5, 6] support relevance feedback retrieval with linear weight-
ings (i.e., database objects still maintain the relative posi-
tions along each axis), they are unable to support nonlin-
ear transformations, such as kernel distances [1, 7]. Ker-
nel distances, however, often show significant performance
improvement over Euclidean type of distance in relevance
feedback retrieval [1, 7].

This paper presents a kernel indexing scheme that sup-
ports relevance feedback retrieval with kernel distances. We
propose to build an index structure in a kernel induced fea-
ture space, where the images of database objects from the
input space are obtained through a nonlinear mapping. Such
an index structure potentially removes its dependency on the
dimensionality of the input space, thereby mitigating its per-
formance degradation with increasing input space dimen-
sionality. In addition, since the construction of the feature
space index is in the span of all data in the feature space, its
behavior is inherently governed by the intrinsic dimension-
ality of the feature space.

2. KERNEL DISTANCE FOR RELEVANCE
FEEDBACK RETRIEVAL

The kernel trick has been applied to numerous problems [8].
The kernel allows an algorithm to work in a feature space.
If ������� is a mapping of a point � in the input space to the
induced feature space
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then the kernel calculates the dot product in the feature space
of the images of two points from input space, %��'&��)(*�+�-,



����& �$�"����(*� � . Common kernels are Gaussian, %���&���(�� ������ � �	��
�� � ��  , and polynomial %���&���(����
�����
, &��)( � � � .
One-class SVM kernel distance is based on the idea of

using a hypersphere to describe relevant retrievals in the fea-
ture space. We want to compute the smallest hypersphere
possible to include most relevant retrievals. This can be
stated more precisely as [7] ��������� ���  �!#"$� %	&('*)�+ ) , sub-
ject to ,������ ) �.-0/�,1"324!#"$� + ) � + )6547 for all 8 . Here9;:=< 7 �>�>? controls the number of relevant retrievals that can
be included in the hypersphere. Using Lagrangian multipli-
ers one can solve the optimization problem and obtain
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with 'B) A ) �C� and 7 2 A ) 2
%	& . Note that the center / (2)

is a convex combination of relevant retrievals in the feature
space. The resulting one-class SVM kernel distance is
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3. KERNEL INDEX

None of the index schemes [9, 5] developed so far support
dynamic kernel distances. This motivates us to investigate
kernel index algorithms for efficient relevance feedback re-
trieval with kernel distances.

The key to kernel indexing is this: while kernel dis-
tances are highly nonlinear and dynamic in the input space,
they remain Euclidean in the kernel induced feature space.
One-class SVMs adaptively computes the kernel distance
(3) with relevance feedback by calculating the center (2)
that is a linear combination of relevant retrievals. It is the
moving center in the feature space that chases user’s per-
ceived similarity. While changing centers result in different
kernel distances in the input space, the squared ( ,��!�����Q-
���)�SR �T,1" ) distance remains the same in the feature space.

We therefore build index structures in the feature space
that are invariant to dynamic kernel distances in the input
space. Note that individual dimensions cannot be directly
accessed. However, there are two approaches to dodging
this problem. One is to choose a orthonormal basis of the
feature space by carrying out the Gram-Schmidt procedure.
From the basis of the feature space one can apply VA-Files
[5, 6] or tree structures to index the database for efficient
NN computation.

The second approach to kernel indexing is metric space
based techniques such as M-trees [9] and vantage-point trees
(vp-trees) [10], where partitions are based on relative dis-
tance rather than absolute coordinate values. By selecting
appropriate kernels, hyperspheres in the feature space thus
implicitly yield a nonlinear structure in the input space. For

the work in this paper, we explore metric space based kernel
indexing.

3.1. M-tree in Feature Space

There are a number of metric space based index methods,
any of which can be constructed in the feature space to give
rise to a kernel index scheme. For the purpose of experimen-
tation, we have used the M-tree indexing scheme in view of
its effectiveness on large databases.

The internal nodes of an M-tree hold a collection of
routing objects, whereas database objects are stored at leaf
nodes. A routing object consists of the object itself, its cov-
ering radius that represents the maximum distance between
the routing object and objects stored at the leaf nodes of its
subtrees, the distance between the covering object and its
parent node, and a pointer to the root. For each leaf node ob-
ject, there is an associated distance between the object and
the covering object of its parent. One of the key elements
of the basic M-tree algorithm is to determine new covering
objects such that the corresponding regions have minimum
overlap and minimum covering volume. For details, see [9].

To build a M-tree in the feature space, we can apply the
M-tree construction algorithm [9] using the distance

D ���*�VU��
� %����*�����W-XI %����*�VU��$� %��YU �KU!� . The same kernel dis-
tance is also used for NN search. In RF retrieval using the
one-class SVM kernel distance, / (2) is initialized to the
query ���GE�� . After each iteration, / is updated according to
(2) with RF. Because � is a nonlinear mapping, in general
we have ' A $����� ) �[Z� ��� ' A ) � ) � . Thus, NN search be-
comes ,��������\- ' A ) ����� ) �T,1" . Effectively we would need
two distance functions to segregate tree building and query-
ing. However, this is simply an implementation issue. The
distance in the feature space remains , �]- �^,_" .

4. EXPERIMENTAL RESULTS

In the following we compare two relevance feedback re-
trieval methods using relatively large sets of real image data:
(1) OCKD - One-class SVM kernel distance (3); and (2)
OCKD-MT - One-class SVM kernel distance coupled with
M-tree indexing in the feature space. We used the Hemera
Photo-Object image data set to evaluate our kernel index
performance. This data set consists of 94800 images that
are very heterogeneous and having annotated ground truth.
Two sets of color histogram features (space spanned by the
histogram features corresponds the input space discussed in
the previous section) are used to represent the images. The
first set of features uses a 1:1 scale and 6 regions, giving
rise to 66 dimensions. The second set of features uses all
scales and 5 regions, resulting in 198 dimensions. We are
curious to know how an increase in dimensionality affects
kernel indexing performance. The dimensions are arranged



by scales, by regions and by zones. A set of 200 randomly
selected images is used as query images.

In all the experiments, the features are first normalized
to lie between 0 and 1. The kernel function we used is the
Gaussian kernel %����*�VU!� � � ������-�� , � -=U ,T" � . Procedural
parameter � was determined empirically.

The left panel in Figure 1 shows the average retrieval
precision obtained by OCKD and OCKD-MT on the 66 di-
mensional image data, respectively, while the right panel in
Figure 1 shows the average retrieval precision obtained by
OCKD and OCKD-MT on the 198 dimensional image data,
respectively. The two methods basically registered the same
average retrieval precision.

Note that the overall poor retrieval precision can be at-
tributed to the poor features we have been able to com-
pute and highly heterogeneous nature of the Hemera Photo-
Object image data that are available to us. In many cases,
there are fewer than 30 images per class. In addition, great
variations exist within each class. Better representation should
improve retrieval performance. Average precision combined
with performance cost still validates our proposed kernel in-
dexing technique.
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Fig. 1. Average retrieval precision achieved by OCKD and
OCKD-MT on the 66 dimensional image data (left) and the
198 dimensional image data (right).

Table 1 shows the average number of distance calcu-
lations per query registered by the two methods in order
to compute 20 nearest neighbors on the 66 (rows two and
three) and 198 (rows four and five) dimensional image data
as a function of iterations. The total number of distance cal-
culations registered by OCKD over 5 iterations is ��� P ���W� 7�	
on both data sets. In contrast, the total number of distance
calculations registered by OCKD-MT is 26214 on the 66 di-
mensional image data, and 178902 on the 198 dimensional
image data. The results show that metric space based index-
ing in the kernel induced feature space is effective and can
indeed significantly improve computational efficiency.

Note that there is an increase in distance calculation by
OCKD-MT on the 198 dimensional image data. There are
two factors that might contribute to the increase. First is the
increase in dimensionality. Second is the � values used in
the Gaussian kernel %����*�VU!� � � ������-�� , � - U ,>"�� . � affects
the distributions of the images in the feature space, which

Table 1. Average distance calculations by OCKD and
OCKD-MT on the 66 and 198 dimensional image data sets.

Method 1 2 3 4 5

OCKD( � � 7�	 ) 
�P ��� 
 P �� 
�P ��� 
 P �� 
�P ���
OCKD-MT 5191 5261 5258 5254 5250

OCKD( � � 7�	 ) 
�P ��� 
 P �� 
�P ��� 
 P �� 
�P ���
OCKD-MT 35077 36123 36003 35872 35827

in turn influences the M-tree construction. Since we only
used fixed � values in the experiments ( � � ������� for the
66 dimensional image data, and � � ����I for the 198 di-
mensional image data), the relative positions of the images
in the feature space might have been skewed, thereby in-
creasing distance calculations. The effect of � on distance
calculations is currently under investigation 1.
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Fig. 2. Average retrieval precisions on the 66 dimensional
(left) and 198 dimensional image data (right) over the 200
queries in the feature and input spaces, respectively.

To further explore the merits of feature space (kernel)
indexing, we built M-trees in both feature and input spaces,
and their indexing performances are evaluated on the two
sets (66 and 198 dimensions) of image data. Note that since
in the input space the nonlinear mapping (1) is reduced to
the identity mapping ������� � � , the corresponding kernel
distance (3) is reduced to

D ���*�KE�� � E � E[-0I ' )  & � � ) E �'*) � N &  � � ) � N , where � ) again represent relevant retrievals.
This distance is used for retrieval and indexing in the input
space.

Figure 2 shows average retrieval precisions achieved the
two approaches (Input and Feature) over the 200 queries in
the feature and input spaces, respectively. Note that retrieval
based on the above distance was unable to achieve the level
of precision that can be computed by the kernel distance (3)
on the 198 dimensional image data. To make a fair compar-
ison, we chose a kernel function so that its retrieval results
in a similar precision performance.

1 � can be leveraged to actively align points in the feature space so that
a balanced tree can be built.



Table 2. Average distance calculations per query on the 66 and 198 dimensional image data sets.

Method 1 � 2 � 3 � 4 � 5 �

Input 17038 7657 16572 7401 16466 7350 16404 7345 16375 7306
Feature 5191 2117 5261 2152 5258 2177 5254 2190 5250 2184
Input 28237 10775 27329 10580 27110 10542 26983 10535 26965 10544

Feature 9911 3849 10246 4113 10226 4127 10198 4127 10188 4136

Table 2 shows the average number of distance calcula-
tions per query registered by the two approaches to compute
20 NNs on the 66 (rows two and three) and 198 (rows four
and five) dimensional image data, along with standard de-
viations ( � ). Note that the observed difference in indexing
performance between the two approaches is statistically sig-
nificant. Given the same level of precision , the results show
that metric space based indexing in the feature space is in-
deed effective and outperforms input space indexing on the
image data we have experimented with. A further examina-
tion shows that the trees in both the feature and input spaces
have the same depth. Therefore, it seems logical to attribute
the superior performance of kernel indexing to the nonlinear
transformation that it employs to map similar data to adja-
cent locations in feature space. A similar phenomenon is
also observed in support vector machine research.

5. CONCLUSIONS

This paper proposes a novel kernel index scheme that sup-
ports RF retrieval using kernel distances. Specifically, we
propose to build an index structure in the feature space,
where the images of database objects from the input space
are obtained through a nonlinear mapping. Indexed fea-
ture space can be accessed directly by means of the ker-
nel trick. Such kernel indexing in feature space potentially
removes its dependency on the dimensionality of the input
space, thereby mitigating its performance degradation with
increasing input space dimensionality. The experimental
results using a large set of images with high dimensional-
ity show that our kernel indexing technique can potentially
improve computational efficiency of NN search for RF re-
trieval.

6. REFERENCES

[1] D. Heisterkamp, J. Peng, and H.K. Dai, “An adaptive
quasiconformal kernel metric for image retrieval,” in
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, Kauai Marriott, Hawaii,
2001, pp. 236–243.

[2] J. Peng, “Multi-class relevance feedback content-

based image retrieval,” Computer Vision and Image
Understanding, vol. 90, no. 1, pp. 42–67, 2003.

[3] J. Peng, B. Bhanu, and S. Qing, “Probabilistic feature
relevance learning for content-based image retrieval,”
Computer Vision and Image Understanding, vol. 75,
no. 1/2, pp. 150–164, 1999.

[4] Y. Rui and T.S. Huang, “Optimizing learning in image
retrieval,” in Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion, Hilton Head Island, South Carolina, 2000, pp.
236–243.

[5] R. Webber, J.J. Schek, and S. Blott, “A quantitative
analysis and performance study for similarity-search
methods in high-dimensional space,” in Proceed-
ings of the International Conference on Very Large
Databases, August 1998, pp. 194–205.

[6] P. Wu and B.S. Manjunath, “Adaptive nearest neigh-
bor search for relevance feedback in large image
databases,” in Proceedings of the ACM Multimedia,
November 2000, pp. 202–209.

[7] Y. Chen, X. Zhou, and T. Huang, “One-class svm for
learning in image retrieval,” in Proceedings of IEEE
International Conference on Image Processing, Thes-
saloniki, Greece, October 2001, pp. 815–818.

[8] Nello Cristianini and John Shawe-Taylor, An Intro-
duction to Support Vector Machines and other kernel-
based learning methods, Cambridge University Press,
Cambridge, UK, 2000.

[9] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: an ef-
ficient access method for similarity search in metric
spaces,” in Proceedings of the International Confer-
ence on Very Large Databases, August 1997, pp. 426–
435.

[10] P. Yianilos, “Data structures and algorithms for near-
est neighbor search in general metric spaces,” in the
3rd Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 1992, pp. 311–321.


