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ABSTRACT

Domain adaptation (DA) algorithms address the problem of
distribution shift between training and testing data. Recent
approaches transform data into a shared subspace by mini-
mizing the shift between their marginal distributions. We pro-
pose a method to learn a common subspace that will leverage
the class conditional distributions of training samples along
with reducing the marginal distribution shift. To learn the
subspace, we employ a supervised technique based on non-
parametric mutual information by inducing soft label assign-
ment for the unlabeled test data. The approach presents an
iterative linear transformation for subspace learning by re-
peatedly updating test data predictions via soft-labeling and
consequently improving the subspace with maximization of
mutual information. A set of comprehensive experiments on
benchmark datasets is conducted to prove the efficacy of our
novel framework over state-of-the-art approaches.

Index Terms— Mutual information, soft-labeling, sub-
space, transfer learning.

1. INTRODUCTION

To build a model for object class detection or regression
problem, it is generally assumed that training and testing
data are sampled from the same distribution. This assump-
tion is often challenged in real life scenario, i.e. the dataset
on which a model is trained (referred to as source domain)
may vary significantly from the test data distribution (target
domain) (Figure 1). This may degrade test accuracy or per-
formance of the trained model and entails the necessity of
adapting that model such that it can overcome the distribu-
tion difference among training and testing datasets, widely
known as dataset bias, domain shift or domain adaptation
[1, 2, 3]. In this paper, we will refer the terms ‘domain’and
‘data’interchangeably. The ultimate goal is to compensate
the distribution divergence between source and target do-
mains such that a classifier trained using source data can also
perform well on diversely distributed but related target data.
Formally, source and target data are represented with same
feature encodings, but their marginal probability distributions
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Fig. 1: Example of distribution differences for the same ‘bi-
cycle’class. DA methods will try to resolve this domain shift
so that a classification model can perform effectively across
domains.

will be different. Here, both domains have the same set of
class labels. One practical example is, learning an image clas-
sification model with images generated from high-resolution
camera whereas deploying that application into a device with
low-resolution camera.

To deal with the domain shift problem, two different set-
tings are usually considered: i) unsupervised domain adapta-
tion [4, 5, 6, 7], where no labeled data available in target do-
main and ii) semi-supervised domain adaptation [8, 9], where
only a few labeled data are available in target domain along
with abundant labeled data of source domain. In this paper,
we will focus on the more challenging unsupervised case.
One popular way to deal with the unsupervised case is to find
a common feature subspace that expresses shared structures
between source and target data. For example, Fernando et
al.[5] proposed a linear projection function to align source
and target distributions. Some other approaches focus in in-
stance re-weighting of source data to match with target data in
order to minimize their distribution differences [6, 10, 11, 2].
Most of these works deal with correcting marginal distribu-
tion shift [5, 4, 6], ignoring the class conditional distribution
of source data. Therefore, the learned subspace may not be
optimal in terms of class separation. This motivates us to uti-
lize class discriminative information of source data to learn a
common feature subspace with goals of resolving the distri-
bution divergence and creating a discriminative subspace for
unlabeled target data.

A supervised technique based on maximization of non-
parametric mutual information (MI) between data and corre-



sponding class labels has been proved effective in learning
a discriminative subspace [12, 13]. Following prior work in
domain adaptation setting with labeled source and unlabeled
target data [7], an iterative method is proposed. At each itera-
tion, a subspace is learned with MI maximization and then tar-
get data class predictions are created with soft-labeling (prob-
ability that a point belongs to a class) by utilizing neighboring
source data in the learned subspace. The soft assignment of
class labels for target data is integrated into the objective func-
tion [12] of MI maximization and influences the next iteration
subspace learning. These two steps continue till converging
to a final subspace.

In summary, the contributions of this work are i) utilizing
class label distributions of source data along with all domain
data distributions to develop a domain adaptation framework,
ii) extending supervised method of MI to support unlabeled
target data by inducing soft-labeling and iii) proposing an it-
erative approach of common subspace learning based on max-
imization of non-parametric MI induced with soft-labeling.

2. SUBSPACE LEARNING BY MAXIMIZING
SOFT-LABELING INDUCED QUADRATIC MUTUAL

INFORMATION (QMI-S)

According to information theoretic literature, Mutual Infor-
mation (MI) is defined as a measure of dependence between
random variables. Assume that X is a random variable rep-
resenting d-dimensional data x ∈ Rd and C is a discrete ran-
dom variable representing class labels c ∈ {1, 2, . . . , Nc},
where Nc is the total number of classes. Let p(x) be the den-
sity function of x and P (c) be the class prior probability. Us-
ing Renyi’s entropy, quadratic mutual information (QMI) is a
non-parametric estimation of MI and is defined as [13],

I(X,C) =
∑
c

∫
x

(p(x, c)− P (c)p(x))2dx

=
∑
c

∫
x

p(x, c)2dx+
∑
c

∫
x

P (c)2p(x)2dx

− 2
∑
c

∫
x

p(x, c)P (c)p(x)dx

= Vin + Vall − 2Vbtw (1)

Bouzas et al. proposed a subspace learning algorithm using
trace-norm formulation of QMI [12]. The data distribution
p(x) is estimated by a Parzen window method using a Gaus-
sian kernel. A multivariate Gaussian N (x;µ,Σ) with mean
vector µ and covariance matrix Σ is,

N (x;µ,Σ) =
1√

(2π)d|Σ|
e(−

1
2 (x−µ)

T Σ−1 (x−µ))

A Parzen window density estimation of p(x) with IID sam-
ples xi is

p(x) =

n∑
i=1

1

n
N
(
x;xi , σ

2I
)

where n is the cardinality of dataset.
We extend [12] by introducing a soft class labeling into

the QMI formulation. The class prior probability P (c) can be
expressed as

P (c) =

n∑
i=1

P (c | xi )P (xi ) =

n∑
i=1

P (c | xi )
1

n
= Sc

where P (c|xi ) is the probability that xi belongs to class c
(soft-labeling). For notational convenience, we will further
refer P (c) as Sc. The joint distribution p(x, c) can be ex-
pressed as

p(x, c) = P (c |x)p(x) =
1

n

n∑
i=1

P (c |xi )N
(
x;xi , σ

2I
)

Following [12]’s approach, a trace-norm derivation using
the above expressions for p(x), P (c) and p(x, c) is presented
in Table 1 and allows Eq.(1) to be rewritten as

I(X,C) = tr
{
ΦT MΦ

}
(2)

where

M =
1

n2

(∑
c

zc z
T
c

)
+

(∑
c

S2
c

n2

)
11T

− 2 · 1

(∑
c

Sc

n2

)
zTc (3)

where zc = [P (c|x1 ), P (c|x2 ), . . . , P (c|xn )]T ∈ Rn×1 is
the soft-labeling introduced into QMI and Φ∈ Rn×m repre-
sents the mapped data points from the original feature space to
a kernel Hilbert space using a mapping function ψ : X → H,
i.e.,K = ΦΦT . This formulation is referred to as QMI-S.

A k-dimensional subspace is learned by finding a linear
transformation W = ΦT A, A ∈ Rn×k, that maximizes
QMI-S. That is, maximize I(X,C) = tr

{
W T ΦT MΦW

}
which with unit covariance constraints becomes (see [12])

A∗ = argmax
AT KA=I

tr
{
AT KM ′KA

}
tr{AT KKA}

(4)

with M ′ = (M +MT )/2 (5)

where M ′ is a symmetric form of M . Centralized Gaus-
sian kernel K ∈ Rn×n is defined as K = Kg − EnKg −
KgEn +EnKgEn , whereKg(i, j) =N

(
xi − xj ; 0, 2σ2I

)
and En ∈ Rn×n consists of elements each equal to 1

n . The
trace ratio problem of Eq.(4) can be approximated as a ratio
trace optimization [14] andA∗ is found using the generalized
eigen value decomposition method [15]. After finding A∗ ,
the data is projected byXp = ΦW = KA∗.



Table 1: Derivation of Vin, Vall and Vbtw . HereK = ΦΦT , zc = [P (c|x1 ), P (c|x2 ), . . . , P (c|xn )]T ∈ Rn×1 and 1 = [1, 1, . . . , 1]T ∈ Rn×1
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∑
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∫
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∑
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}
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Fig. 2: Proposed method for iterative subspace learning based
on QMI-S maximization.

3. ITERATIVE IMPROVEMENT OF
SOFT-LABELING AND QMI-S SUBSPACE

The data available are X ∈ Rn×d consisting of source do-
main data Xs ∈ Rns×d, target domain data Xt ∈ Rnt×d

and ground truth labels of source data [y1, y2, . . . , yns
]T ,

where ns and nt represent source and target data size respec-
tively and n = ns + nt. P (c|xi ) is defined as follows. For
xs
i ∈Xs , labels are known so hard labeling can be used (i.e,

P (c|xs
i ) = 1 if c = yi else 0). On the other hand, target data

are unlabeled, so a full distribution is used. For target data,
P (c |xt

i ) is initialized with uniform label distribution i.e., for
xt
i ∈ Xt , P (c |xt

i ) = 1
Nc

for each c ∈ {1, 2, . . . , Nc}. If
source labels are from a classifier instead of ground truth then
the classifier’s P (c|xs

i ) can be used instead of hard labels.
The proposed iterative QMI-S (Figure 2) consists of,

Step-I: M ′ is computed using Eq. (3) and (5). To find
A∗ for learning QMI-S subspace, Eq.(4) can be rewritten
as KM ′KU = KKUΛ, where Λ is a diagonal matrix of
eigen values and U is a matrix of corresponding eigen vec-
tors. For computational efficiency, we substitute KU with a
new variable V i.e. KU = V , multiply both sides by K−1

and obtain M ′V = V Λ. This is a standard eigen problem
where V and Λ represent matrix of eigen vectors and eigen
values respectively. AsM ′ has rank Nc − 1, the Nc − 1 vec-
tors with largest eigen values are selected from V . Hence,A∗

will be A∗ = K−
1
2 V and the projected data Xp ∈ Rn×k

will be computed asXp = KA∗ = K
1
2 V .

Step-II: Target data predictions P (c|xt
i ) are updated by ap-

plying a classifier trained with projected source data. This
will eventually update M ′ of Step-I for the next iteration.
P (c|xs

i ) will be remained same through out the iterations.
The overall process is summarized in Algorithm 1.

Convergence criterion The proposed algorithm will

Algorithm 1 Subspace learning based on iterative QMI-S.
1: Input: Data matrix X=[Xs ;Xt ]∈ Rn×d where source data

Xs ∈ Rns×d and target data Xt ∈ Rnt×d, source data labels
[y1, y2, . . . , yns ]

T .
2: Output: Xp ∈ Rn×k , k-dimensional projected data.
3: Initialization: For xt

i ∈ Xt , P (c|xt
i ) = 1

Nc
for each c ∈

{1, 2, . . . Nc}. For xs
i ∈ Xs , P (c|xs

i ) = 1 if c = yi and
P (c|xs

i ) = 0 otherwise, for each c ∈ {1, 2, . . . Nc}.
4: Compute a centralized Gaussian kernel matrix, K∈ Rn×n.
5: repeat

Step-I:
6: Compute M ′ matrix using Eq.(3) and (5).
7: Solve standard eigen problem, M ′V = V Λ.
8: Compute projected data Xp = K

1
2 V .

Step-II:
9: Train a classifier f using projected source data Xs

p and apply it to
update P (c|xt

i ) with soft-labeling.
10: until convergence (defined in Section 3).

reach convergence when subspace change in two successive
iterations will be negligible. The subspace is defined by the
basis vectors V . The difference beween two k-dimensional
subspaces can be approximated as a subspace distance on a
Grassmannian [16]. One such distance metric measures the
principal angle θ between Vi and Vi+1 of iterations i and
i + 1 respectively [17, 16]. A convergence threshold ε is set
and the algorithm terminates when θ ≤ ε. At this state, class
predictions for target data are stabled.

4. DATASET AND EXPERIMENTS

The proposed method is implemented and tested against
popular benchmark datasets. Office is a widely used im-
age database for domain adaptation [18]. It contains three
different domains (Amazon, DSLR, Webcam) of images cap-
tured with varied settings and image conditions. Images
of Amazon are downloaded from amazon site, DSLR con-
tains images captured with high-resolution DSLR camera and
Webcam contains images captured with low-resolution web
camera. Additionally, a popular dataset for object recognition
Caltech-256 [19] is used. The experiments will be conducted
using these 4 domains with 10 common categories selected
from each of them (Bike, BackPack, Calculator, Headphone,
Keyboard, Laptop, Monitor, Mouse, Mug, Projector). From
these 4 domains, a total of 12 DA sub-problems can be



Table 2: Comparative results in terms of classification accuracy(%) of target data for 12 different sub-problems. Each sub-problem consists
of source → target, where source or target represents any of the four domains: C(Caltech-256), A(Amazon), W(Webcam) and D(DSLR).

Methods C→ A C→W C→ D A→ C A→W A→ D W→ C W→ A W→ D D→ C D→ A D→W Avg
Origfeat 23.70 25.76 25.48 26.00 29.83 25.48 19.86 22.96 59.24 26.27 28.5 63.39 31.37

PCA 36.95 32.54 38.22 34.73 35.59 27.39 26.36 29.35 77.07 29.65 32.05 75.63 39.65
GFK 41.02 40.68 38.85 40.25 38.98 36.31 30.72 29.75 80.89 30.28 32.05 75.59 42.95
SA 42.07 32.2 45.86 39.8 37.63 36.94 28.76 34.34 88.54 32.5 34.24 88.47 45.11

TCA 45.82 30.51 35.67 40.07 35.25 34.39 29.92 28.81 85.99 32.06 31.42 86.44 43.03
TFL 44.78 41.69 45.22 39.36 37.97 39.49 31.17 32.78 89.17 31.52 33.09 89.49 46.31
TJM 46.76 38.98 44.59 39.45 42.03 45.22 30.19 29.96 89.17 31.43 32.78 85.42 46.33

QMI-H 55.95 49.49 45.86 42.12 42.71 37.58 30.37 35.8 80.89 35.71 38.31 61.02 46.32
QMI-S 57.72 55.93 48.41 41.76 46.44 38.85 30.72 36.74 83.44 38.38 42.48 77.63 49.88

created, each of which contains one source and one target
domain.

Experimental setup The image representations pub-
lished by Gong et al.[4] are used and the experimental proto-
col of [6, 7] is followed. Input data are whitened with PCA
preserving 95% of the data variance. Gaussian kernel σ is
set to median of the pair-wise distances of data in original
feature space. A K-nn classifier with K set to log(ns) + 1
heuristic [20] is used in line 9 of Algorithm 1. Convergence
threshold ε = 1 × 10−4 is used. The proposed QMI-S will
be compared with 7 other methods (see Table 2). They can be
categorized as follows,
• Without adaptation: Origfeat and PCA indicate the

classification accuracy of target data in original feature
space and PCA subspace respectively.

• Adaptation based on subspace alignment: It includes
geodesic flow kernel (GFK) [4], subspace alignment
(SA) [5], transfer component analysis (TCA) [21] and
transfer feature learning (TFL) [7].

• Adaptation based on subspace alignment+instance re-
weighting: includes transfer joint matching (TJM) [6].

Analysis For each of the 12 sub-problems with source-
target combination (C→A, C→W etc.), we reported the clas-
sification accuracy(%) of target domain data. For all methods,
accuracy is determined by a one nearest neighbor classifier in
the projected space or quoted from [6]. Our method shows
improved performance compared to others and outperforms
them in 7 out of 12 sub-problems. In terms of average accu-
racy over all 12 cases, our method is 3.75% ahead of the clos-
est average accuracy (TJM). We also conducted experiments
with hard-labeling (denoted as QMI-H in Table 2) for target
predictions. Iterative QMI-S approach clearly shows its supe-
riority as it conservatively updates target data labels, whereas
QMI-H is aggressive and once a target point is falsely la-
beled, it is prone to stick with this label in successive itera-
tions.

Figure 3 shows the affinity structure in the learned fea-
ture space for three different methods including ours for the
sub-problem C → A. Projected data are obtained using
Origfeat, TJM and iterative QMI-S method. For illustra-
tion, 1051 projected data from 5 different classes are chosen

Src

Src Trg

Trg

(a) (b) (c)

Fig. 3: Assesing the quality of feature subspace by similar-
ity matrix for sub-problem C → A using (a) original feature
space, (b) TJM and (c) iterative QMI-S.

with the first set is 584 data from source domain sorted by
class and the second set is 467 data from target domain sorted
by their predicted labels. A similarity matrix with 25-nearest
neighbors is constructed (see Figure 3). The top-left and
bottom-right sub-matrices of each sub-figure represent sim-
ilarity inside a domain (source or target). Iterative QMI-S
exhibits more compact block diagonal structure (Figure 3(c))
compared to TJM (Figure 3(b)). The top-right and bottom-
left sub-matrices represent similarity across domains with
better compact block diagonal structure generated by our
method (which represents better within-class similarity).

In terms of computational cost, the average over all 12
sub-problems of the number of iterations of QMI-S until con-
vergence is 25. The dominate cost in each iteration is solving
an eigen value decomposition of a n × n for a set of largest
eigenvalues and eigenvectors.

5. CONCLUSION

This paper proposes a domain adaptation algorithm based on
soft-labeling induced quadratic mutual information. Unlike
other subspace alignment methods, the goal is to utilize class
conditional distribution of source domain to learn a common
subspace with improved class separation such that a classifier
trained with projected source data can be applied to projected
target data effectively. In future work, we are planning to
incorporate instance weighting into this framework in order
to facilitate subspace learning only with closely related data
samples across domains along with minimizing the impact of
unrelated source samples.
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