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Abstract—Domain adaptation (DA) algorithms utilize a label-
rich old dataset (domain) to build a machine learning model
(classification, detection etc.) in a label-scarce new dataset with
different data distribution. Recent approaches transform cross-
domain data into a shared subspace by minimizing the shift
between their marginal distributions. In this paper, we propose
a novel iterative method to learn a common subspace based on
non-parametric quadratic mutual information (QMI) between
data and corresponding class labels. We extend a prior work of
discriminative subspace learning based on maximization of QMI
and integrate instance weighting into the QMI formulation. We
propose an adaptive weighting model to identify relevant samples
that share underlying similarity across domains and ignore
irrelevant ones. Due to difficulty of applying cross-validation,
an alternative strategy is integrated with the proposed algorithm
to setup model parameters. A set of comprehensive experiments
on benchmark datasets is conducted to prove the efficacy of our
proposed framework over state-of-the-art approaches.

I. INTRODUCTION

To build an object recognition or classification model, suf-
ficient number of labeled images are necessary. Such models
are tested using images sampled from the same distribution
as training one. In real life scenario, training and testing data
distributions might be different. Also collecting and annotating
training data by manual intervention is often expensive, hence
building a supervised machine learning model in a new domain
becomes challenging. Therefore, the need for transferring
knowledge from a related domain (source) to a novel one
(target) becomes inevitable. One practical example is, learning
a classification model using images captured with canonical
viewpoints in a studio environment and deploying that ap-
plication to recognize images taken in natural surroundings
(see Figure 1). According to the literature, this problem area
is widely known as transfer learning, dataset bias, domain
shift or domain adaptation [1], [2], [3]. Researchers focus
on leveraging a label-rich source domain to build an adaptive
classifier for the target domain where i) label information is
in poor supply and ii) marginal data distribution is different
from source domain.

To deal with the domain adaptation problem, two differ-
ent settings are usually considered: i) unsupervised domain
adaptation [4], [5], [6], [7], where no labeled data available
in target domain and ii) semi-supervised domain adaptation
[8], [9], where only a few labeled data are available in
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Fig. 1: Two domains with different data distributions.

target domain along with abundant labeled data of source
domain. In this paper, we will focus on the most challenging
unsupervised case. Recent works in this area are mainly based
on 1) subspace learning which focuses to learn a shared
subspace by discovering the underlying common structures
across domains and 2) instance weighting on source data
to match their distribution with target data. Some works
focused on unifying both strategies in a single framework
and reported better performance than employing a single one
[6], [10]. As an example of the first strategy, Gong et al. [4]
proposed a kernel based method that models the underlying
low-dimensional structure along the geodesic path from source
to target domain. All available source data are utilized in
their approach. Practically, not all the source data are useful
for transfer learning [10] i.e. some source samples share
very little structural similarity with target domain data. We
propose an iterative framework for common subspace learning
incorporated with instance weighting to model this scenario.
An adaptive weight update recipe is applied to down-weight
irrelevant source samples and up-weight cross-domain data
with shared similarity.

Learning a common discriminative subspace by utilizing
source information has been proved effective in domain adap-
tation context [11]. This work was inspired by [12], [13] and
proposed a linear transformation based on maximization of
non-parametric quadratic mutual information (QMI) between
data and corresponding class labels. Also refinement of linear
transformation with updated prediction of target data via soft-
labeling (distribution of class labels for a point) was integrated
with their algorithm. We improved their approach to leverage
the benefit of discriminative subspace and induced instance
weighting for source and target data in QMI formulation.



Nevertheless, we propose an unsupervised technique for set-
ting model parameters, as traditional cross-validation approach
is difficult due to unavailability of labeled data in target
domain. The main contributions of this paper are summarized
as follows,

(i) Learning a linear transformation to create common dis-
criminative subspace based on maximization of QMI
induced with instance weighting.

(ii) Proposing an adaptive weighting model to identify cross-
domain data with shared similarity to assign them with
higher weights compared to others.

(iii) Proposing an alternative approach of parameter selection
in an unsupervised fashion without requiring labeled data
from target domain.

In Figure 2, the initial and final stage of the proposed iterative
algorithm is illustrated.

II. RELATED WORK

Domain adaptation algorithms based on subspace learning
has become popular in recent years [6], [5], [4], [7]. Most
of these methods are developed based on the assumption of
common underlying structure shared across domains. In [7], a
common feature representation is proposed in a principled di-
mensionality reduction process. This work is further enhanced
in [6] by introducing re-weighting of source samples to match
them with target data. The motivation of our work is similar to
[6]. However, we employed non-uniform instance weighting
for cross-domain samples, as opposed to [6] where only
source samples are weighted. Recent work based on landmark
selection also focuses on identifying relevant samples from
both source and target domains [10]. Their approach chooses
landmarks by matching pair-wise samples across domains in
kernel space and used them to align the two domains. Despite
its efficiency, it is observed that landmark selection is a static
process and requires to build the subspace from scratch in
case of availability of new data. In contrast, we propose
the selection of cross-domain similar instances via an adap-
tive weighting model. This model is coupled with subspace
learning with an iterative feedback loop and leverages two
benefits: i) refinement of the linear transformation through
updated instance weights, and ii) assessing the cross-domain
data similarity in the low-dimensional learned subspace, as
opposed to kernel space [10].

A. Prior work on QMI based domain adaptation

Our work adopted the procedure of discriminative subspace
learning by maximization of QMI from [11] i.e. the objective
function for optimization and its solution process are adopted
from this paper. We will provide a brief description of the
derivation of objective function. According to information
theoretic literature, Mutual Information (MI) is defined as a
measure of independence between random variables. Assume
that X is a random variable representing d-dimensional data
x ∈ Rd and C is a discrete random variable representing
class labels c ∈ {1, 2, . . . , Nc}, where Nc is the total number
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Fig. 2: ‘S’ and ‘T’ represent data from source and target domain respectively,
colors represent different classes and font-size is proportional to individual
sample weight. Initially target data are unknown and assigned with negligible
or zero weights (left sub-figure). In the learned subspace (right sub-figure),
data with shared similarity are closely projected, while ignoring irrelevant
samples by down-weighting.

of classes. Also let p(x) is the marginal density function of
x and P (c) is the class prior probability. Following Renyi’s
entropy, a non-parametric quadratic estimation of MI (denoted
as quadratic mutual information or QMI) is defined as [13],

(1)

I(X,C) =
∑
c

∫
x

(p(x, c)− P (c)p(x))2dx

=
∑
c

∫
x

p(x, c)2dx+
∑
c

∫
x

P (c)2p(x)2dx

− 2
∑
c

∫
x

p(x, c)P (c)p(x)dx

= Vin + Vall − 2Vbtw

The subspace learning algorithm of [11] followed the trace-
norm formulation of QMI proposed by Bouzas et al. [12].
They extended QMI by inducing soft class labeling, referred
to as QMI-S.

Now P (c), p(x, c) and p(x) in Eq. (1) is evaluated by a
Parzen window method based on Gaussian kernel. A Gaussian
distribution function N (x;µ,Σ) with mean vector µ and
covariance matrix Σ is,

N (x;µ,Σ) =
1√

2π|Σ|
e

(
−1

2
(x− µ)

T
Σ−1 (x− µ)

)

and the Gaussian kernel matrix is Kg with Kg(i, j) =
N
(
xi − xj ; 0, 2σ2I

)
. Assume X ∈ Rn×d represents d-

dimensional data points of size n and Φ∈ Rn×m represents
mapped data from raw feature space to a kernel Hilbert space,
where m is the dimension of kernel space. A linear transfor-
mation function (alternatively, a projection matrix) is learned
to create a k-dimensional subspace (k < d) by maximizing
QMI-S between projected data and corresponding class labels.
The final optimization objective takes the following form,

A∗ = arg max
AT KA=I

tr
{
AT KM ′KA

}
tr{AT KKA}

(2)

M ′ = (M +MT )/2 (3)

The matrix M is extracted from the formulation of QMI-S
(see Eq. (2) of [11]). Also W is a projection matrix which
is restricted to be in the range of Φ i.e. W = ΦT A, where
A ∈ Rn×k is a co-efficient matrix. A centralized Gaussian



kernel K ∈ Rn×n is defined as K = Kg − EnKg −
KgEn +EnKgEn , where En ∈ Rn×n consists of elements
each equal to 1

n . See [12] for a detailed derivation of this
objective function. The trace ratio problem of Eq. (2) can
be approximated as a ratio trace optimization and solved for
A∗ using generalized eigen value decomposition method [14].
Hence Eq. (2) can be rewritten as KM ′KU = KKUΛ,
where Λ is a diagonal matrix of eigen values and U is a matrix
of corresponding eigen vectors. Substituting KU with V and
multiplying both sides by K−1 , it becomes M ′V = V Λ.
This is a standard eigen problem where V and Λ represent
matrix of eigen vectors and eigen values respectively. As M ′

has rank Nc− 1, the Nc− 1 vectors with largest eigen values
are selected from V . Hence, A∗ will be A∗ = K−

1
2 V .

Finally, the projected data Xp ∈ Rn×k will be computed as
Xp = KA∗ = K

1
2 V .

III. QUADRATIC MUTUAL INFORMATION INTEGRATED
WITH INSTANCE WEIGHTING

In [11], soft class labeling is induced in the QMI formula-
tion (Eq. (1)). We further extend it by scaling the soft-labeling
of a point with corresponding weight. We define weight of a
sample xi as the discrete probability distribution P (xi ) over
the training samples X i.e. wi = P (xi ). The expressions for
P (c), p(x, c) and p(x) of Eq. (1) are evaluated as follows,

p(x) =

n∑
i=1

P (xi )N
(
x;µ, σ2I

)
=

n∑
i=1

wiN
(
x;µ, σ2I

)
P (c) =

n∑
i=1

P (c | xi )wi = Sc

p(x, c) = P (c)p(x | c)

=

n∑
i=1

P (c|xi )wiN
(
x;µ, σ2I

)
=

n∑
i=1

zc,iN
(
x;µ, σ2I

)
where zc,i = P (c|xi )wi represents soft-labeling scaled with
individual sample weight. Also for notational convenience,
P (c) is referred to as Sc. Now inspired by [11] and using the
expressions for p(x), P (c) and p(x, c) derived above, we can
further elaborate Eq. (1) (see Table I) which is rewritten as,

I(X,C) = tr

{
ΦT

((∑
c

zc z
T
c

)
+

(∑
c

S2
c

)
wwT − 2w

(∑
c

Scz
T
c

))
Φ

}
= tr

{
ΦT MΦ

}
where,

M =

(∑
c

zc z
T
c

)
+

(∑
c

S
2
c

)
ww

T − 2 ·w
(∑

c

Sc

)
z
T
c (4)

Here, w = [w1, w2, . . . , wn]T ∈ Rn×1 is a weight vector
consisting of all sample weights with

∑n
i=1 wi = 1 and

zc = [zc,1, zc,2, . . . , zc,n]T ∈ Rn×1. We refer to this
expression as WQMI-S. This is a generic formulation of QMI
and by choosing wi = 1

n , we can obtain QMI-S of [11].

IV. PROPOSED DA FRAMEWORK BASED ON WQMI-S

We propose an iterative algorithm (referred to as iterative
WQMI-S) based on subspace learning by maximization of
WQMI-S. Input data X ∈ Rn×d consists of source domain
data Xs ∈ Rns×d and target domain data Xt ∈ Rnt×d.
Ground truth labels of source data is [y1, y2, . . . , yns

]T , where
ns and nt represent source and target data size respectively
(n = ns +nt). As an initialization step of the algorithm, soft-
labeling P (c|xi ) of a sample xi and weight vector w are set.
For source point xi ∈Xs ,

P (c|xi ) =

{
1 if c = yi

0 otherwise

for each c ∈ {1, 2, . . . , Nc}. On other hand, target data
are unlabeled and hence are initialized with uniform label
distribution i.e. for target point xi ∈ Xt , P (c|xi ) = 1

Nc

for each c ∈ {1, 2, . . . , Nc}. Initialization of w is subject to
choice of an instance weighting model. We proposed one such
model for w later in this section.

Each iteration of the proposed algorithm will learn a sub-
space, update label predictions of target data via soft-labeling
and adjust instance weights. Subspace learning procedure is
described earlier in Section II-A, where M will be used from
Eq (4). After obtaining projected data, each target sample’s
prediction is updated by the weighted average prediction of its
neighboring samples in WQMI-S subspace. Denoting LK(x)
as the set of K neighboring points of a sample x, the update
rule will be following,

P (c|xi ) =
∑

xj ∈Lk(xi )

wjP (c|xj ) for each xi ∈Xt (5)

Finally, instance weights are updated through a weight adap-
tation process.

A. Instance weight adaptation

We propose a weight adaptation formula to adjust weights
of source and target samples at each iteration. Weight vector
w is initialized: for each source sample xi ∈ Xs , wi = 1

ns

and for each target sample xj ∈ Xt , wj = 0. With this
assignment, the initial learned subspace is dominated by Xs

and further refined through out the iterations. The goal is
to assign higher weights to relevant samples compared to
others. To do this, a fraction from each instance weight is
shrinked and then the total shrinked weight is re-distributed
among candidate sets that contain cross-domain data with
shared underlying similarity. Three sets of candidate points
are defined as follows,

Ωs = {x|(x ∈Xs ) ∩ (x ∈ LK(xi ), ∃xi ∈Xt )}
Ωta = {x|x ∈Xt }
Ωth = {x|x ∈Xt ∩maxP (c|x) ≥ τ}

τ is chosen to construct Ωth which is defined as a set of target
points with confidence in corresponding label predictions.
Source and target data with underlying shared similarity are



TABLE I: Derivation of Vin, Vall and Vbtw . Here K = ΦΦT , zc = [zc,1, zc,2, . . . , zc,n]T ∈ Rn×1 and w = [w1, w2, . . . , wn]T ∈ Rn×1

Vin =
∑
c

∫
x
p(x, c)2dx

=
∑
c

n∑
i=1

n∑
j=1

zc,izc,jN
(
xi − xj ; 0, 2σ2I

)
=
∑
c

zc
TKzc

=
∑
c

tr
{
Kzc zc

T
}

= tr

{
ΦT

(∑
c

zc z
T
c

)
Φ

}

Vall =
∑
c

∫
x
P (c)2p(x)2dx

=
∑
c

S2
c

n∑
i=1

n∑
j=1

wiwjN
(
x;xi , σ

2I
)
N
(
x;xj , σ

2I
)

=

(∑
c

S2
c

)
wT Kw

=

(∑
c

S2
c

)
tr
{
KwwT

}
=

(∑
c

S2
c

)
tr
{

ΦT (wwT )Φ
}

Vbtw =
∑
c

∫
x
p(x, c)P (c)p(x)dx

=
∑
c

Sc

n∑
i

n∑
j

zc,iwjN
(
xi − xj ; 0, 2σ2I

)
=
∑
c

Sc zc
TKw

=
∑
c

tr
{
Sc

(
K ·w · zT

c

)}
= tr

{
ΦT

(
w
∑
c

Scz
T
c

)
Φ

}

projected in a close proximity on the subspace. Hence, mem-
bers of Ωs (source candidate set) are up-weighted compared
to other source data. The rest two sets consist of target data.
Now weight shrinking and re-distributing take the following
form,

w′i = wi − αwi. (6)

wnewi =


w′i + ηα

|Ωs| , if xi ∈ Ωs

w′i + ((1−η)α)β
|Ωth| , if xi ∈ Ωth

w′i + ((1−η)α)(1−β)
|Ωta| , if xi ∈ Ωta.

(7)

Here a fraction α is extracted from each instance weight
(weight shrinking) resulting in total shrinked weight as∑n
i=1 αwi = α. This shrinked weight α is distributed among

candidate points according to Eq. (7). The parameter η con-
trols the partition of α among source and target candidate
points and β controls the partition of allotted α among the
members of Ωth and Ωta. All target points are assigned with
uniform weights (as members of Ωta) except some of them
also gain ‘bonus’weights (as members of Ωth).

The weight mass is initially concentrated on source points
and will eventually be shifted towards candidate points
through out the iterations of iterative WQMI-S algorithm. This
is a generic weighting scheme where α, β and η are chosen
appropriately from 0 < α, η, β ≤ 1.

B. Unsupervised parameter selection

To update weight vector w in iterative WQMI-S algorithm,
parameters α, η, β and τ are set. For α, we argue that it is
linearly proportional to the ratio r = |Ωth|

|Ωta| . High value of
r indicates the growth of target confident points and hence
larger α is necessary to be shrinked for weight re-adjustment
in target domain. In our implementation, α = r

2 is used. Next,
η is set to 0.5 to maintain a balance in weight re-adjustment
among source and target candidate points. The ‘bonus’weight
assignment for the members of Ωth is controlled by β. The
intension is to assign confident target points with higher
weights compared to other target ones. Any function charac-
terizing this behavior would suffice to define β. In this work,
β = max(r, e−r) is used. Note that, when |Ωth| is small,
most points are non-confident and assigned with very small
weights and vice versa. Lastly, τ is used to construct Ωth. For
tasks with moderate number of categories, τ = 0.7 might be
a simple choice. Instead in our work, an alternative strategy is

applied. Note that, each iteration of iterative WQMI-S involves
a subspace learning, update of label predictions for target data
and weight vector w. The idea is to unify subspace learning
and weight update as follows,
• Choose parameter τ from a set of possible choices, e.g.
{0.55, 0.6, 0.65, 0.7, 0.75}. Update w using Eq. (6), (7).

• Compute M , learn a WQMI-S subspace and obtain
projected data.

• K-means clustering is applied to projected target data for
each WQMI-S subspace, where K is set to the number
of unique categories. From each of these clusterings,
a scatter metric G = Jb

Jw
is computed with Jw and

Jb representing trace-norm of within-cluster scatter and
between-cluster scatter matrices respectively [15].

The idea is to select the best subspace generated by using
corresponding τ . Assuming projected data will be tightly
clustered around their class means, the WQMI-S subspace
(alternatively, projected data) with maximum G is chosen. We
refer to this scheme as unsupervised parameter selection, UPS
(Figure 3). This projected data chosen in current iteration are
utilized in next one for label predictions of target data. The
overall approach is summarized in Algorithm 1.

C. Termination criteria

The algorithm will terminate when weight re-adjustment in
successive iterations is negligible i.e. any of these two criteria
is satisfied: i) weight change for each target point in successive
iterations is negligible or ii)

∑ns

i=1 wi =
∑nt

j=1 wj with sum
of weights for non-candidate source points is negligible. After
termination, a target point x is annotated with class c, where
c = arg maxc P (c|x).

V. DATASET AND EXPERIMENTS

‘Office’is a widely used image database for domain adapta-
tion [16]. It contains three different domains (Amazon, DSLR,
Webcam) of images captured with varied settings and image
conditions. Images of Amazon are downloaded from amazon
site, DSLR contains images captured with high-resolution
DSLR camera and Webcam contains images captured with
low-resolution web camera. Additionally, a popular dataset for
object recognition ‘Caltech-256’[17] is used. The experiments
will be conducted using these 4 domains with 10 common
categories selected from each of them (Bike, BackPack, Cal-
culator, Headphone, Keyboard, Laptop, Monitor, Mouse, Mug,
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𝜏

Fig. 3: Block diagram for unsupervised parameter selection.

Algorithm 1 Iterative WQMI-S: Subspace learning algorithm
with maximization of WQMI-S.
1: Input: Data matrix X=[Xs ,Xt ]∈ Rn×d where source domain data

Xs ∈ Rns×d and target domain data Xt ∈ Rnt×d with n = ns + nt,
label vector for source data [y1, y2, . . . , yn]T ∈ Rns×1.

2: Output: Projected data in final learned subspace Xp ∈ Rn×k .

3: Initialize weight vector w and P (c|x).
4: Compute a centralized Gaussian kernel matrix, K∈ Rn×n.
5: Call eigenM(w, P (c|x)) to obtain projected data Xp .
6: repeat
7: for all projected target point xi do
8: Update P (c|xi ) using Eq. (5).
9: end for

10: Choose possible values for τ e.g. τ ∈ {0.55, 0.6, 0.65, 0.7, 0.75}.
11: for each τ do
12: Construct Ωs, Ωth and Ωta.
13: Apply Eq. (6) and (7) to update w and assign w[i]← w.
14: Call eigenM(w[i], P (c|x)) to obtain projected data Xp [i].
15: Apply K-means clustering to the projected target data.
16: Compute scatter metric G[i].
17: end for
18: Choose Xp [j] and w[j] such that j = arg maxj G(j).
19: Assign Xp ←Xp [j] and w ← w[j].
20: until termination criteria (Section IV-C) satisfied

21: procedure eigenM (w, P (c|x))
22: Compute M ′ matrix using Eq.(4) and (3).
23: Solve standard eigen problem, M ′V = V Λ.
24: Compute projected data Xp = K

1
2 V .

Projector). Total 7 DA sub-problems are created, each of which
contains one source and one target domain with ns > nt or
ns ≈ nt. Our algorithm assumes a balance between source
and target datasize, as smaller source domain is impractical
for knowledge transfer.
Experimental setup The image representations published by
Gong et al.[4] are used in our experiments. Also the exper-
imental protocol of [6], [7] is followed. For other methods,
a nearest neighbor classifier was trained with source data
to classify target points. For fair comparison, each target
point is annotated by the label of its nearest point in the
learned subspace in iterative WQMI-S algorithm. Input data
are whitened with PCA preserving 95% of the data variance.
Following heuristic, σ of Gaussian kernel is set to median of
the pair-wise distances of data in raw feature space [10]. Also
K is set to (log(ns) + 1) [18] to construct Lk. The iterative
WQMI-S algorithm is compared with 7 other methods (see
Table II). They can be categorized as follows,

TABLE II: Comparative results in terms of classification accuracy(%) of target
data for 7 different sub-problems of Office+Caltech dataset. Each sub-problem
is in the form of source → target, where C(Caltech-256), A(Amazon),
W(Webcam) and D(DSLR) indicate four different domains.

Methods C → A C → W C → D A → C A → W A → D W → D Avg

Origfeat 23.70 25.76 25.48 26.00 29.83 25.48 59.24 30.78

PCA 36.95 32.54 38.22 34.73 35.59 27.39 77.07 40.36

GFK 41.02 40.68 38.85 40.25 38.98 36.31 80.89 45.28

TFL 44.78 41.69 45.22 39.36 37.97 39.49 89.17 48.24

TJM 46.76 38.98 44.59 39.45 42.03 45.22 89.17 49.46

QMI-S 57.72 55.93 48.41 41.76 46.44 38.85 83.44 53.22

WQMI-S 57.48 58.64 50.07 41.48 50.51 45.61 82.8 55.23

• Without adaptation: Origfeat and PCA indicate the clas-
sification accuracy of target data in original feature space
and PCA subspace respectively.

• Adaptation based on subspace alignment: It includes
geodesic flow kernel (GFK) [4] and transfer feature
learning (TFL) [7].

• Adaptation based on subspace alignment + instance re-
weighting: it includes transfer joint matching (TJM) [6].

Pascal-Sun-Caltech dataset

Another experiment is conducted with three differ-
ent datasets namely PASCAL2007(Ps), Caltech-101(Cl) and
SUN09(Sn) [19]. Five common object classes (Bird, Car,
Chair, Dog, Person) are selected from each of them. The image
representations released by [19] are used, where each image is
encoded with 5376 dimensional feature vector. Classification
accuracy in target domain is reported in Table III.
Analysis For Office+Caltech dataset, the iterative WQMI-
S method shows improved performance compared to other
methods and outperforms them in 4 out of 7 sub-problems
by significant margin. Also the average accuracy over all sub-
problems is 2.01% higher than the second best performance.
QMI-S is essentially a variant of WQMI-S, which is based
on QMI maximization using soft-labeling with unweighted in-
stances; accuracy of QMI-S is quoted from [11]. The accuracy
data for GFK, TFL and TJM are quoted from [6] and [7]. It
is noted that using both instance weighting and soft-labeling
is very effective in learning a domain adaptive discriminative
subspace. Similar behavior is observed for the Pascal-Sun-
Caltech dataset (Table III). In this case, for GFK, TFL and
TJM, classification accuracies are computed using different
subspace dimensions and best results are reported. For both
experiments, because of unsupervised clustering involved in
UPS technique of our iterative WQMI-S algorithm, each sub-
problem is run 5 times and the average accuracy is provided.

According to the proposed weight update model, source
points residing in the neighborhood of target data in WQMI-
S space are assigned with higher weights compared to other
source points. As non-candidate source points are distantly
projected from target data cloud, they are down-weighted
through out the iterations. This phenomena is analyzed by
measuring the minimum of distances between each source
point and all the target points, i.e. for a source point xi ∈Xs ,



TABLE III: Comparative results in terms of classification accuracy(%) of
target data for 4 different sub-problems of Pascal-Sun-Caltech dataset. Each
sub-problem is in the form of source → target, where Cl(Caltech-101),
Sn(SUN ’09), Ps(Pascal 2007) indicate three different domains.

Methods Sn → Cl Sn → Ps Ps → Cl Ps → Sn Avg

Origfeat 20.28 28.92 55.51 41.3 36.5

PCA 21.59 31.03 64.25 42.17 39.76

GFK 33.65 35.06 64.86 44.71 44.57

TFL 39.16 39.71 61.89 44.08 46.21

TJM 41.00 35.68 57.34 41.35 43.84

QMI-S 38.46 39.19 62.24 43.46 45.84

WQMI-S 42.31 42.29 69.14 44.56 49.58

dm(xi ) = min dist(xi ,xj ), for ∀xj ∈ Xt . Here dist(., .)
measures a distance between two points. The weight of xi
and dm(xi ) follow negative correlation i.e. the increase of
dm(xi ) results in down-weighting of corresponding xi and
vice versa. This behavior is illustrated in Figure 4 for two sub-
problems (A → W , A → D). The line fitted in dm(xi ) vs.
weight scatter plot indicates that source candidate points are
higher weighted and projected in close proximity of target data
(hence dm(xi ) is lower). Weight decreases with the growth
of dm(xi ) for non-candidate points.

Finally, we used a visualization tool named t-SNE [20]
to plot the projected source and target samples in 2d space
(Figure 5). Target data are plotted with corresponding pre-
dicted labels. It is observed that data in WQMI-S subspace
is tightly clustered compared to TJM. This also supports
the unsupervised clustering of UPS process as a reasonable
alternative strategy of parameter selection.
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Fig. 4: Scatter plot for weight vs. dm value of each source point xi ∈Xs in
two sub-problems, where dm(xi ) = min dist(xi ,xj ), for ∀xj ∈Xt .
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(a) G = 146.36 (TJM)
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(b) G = 296.62 (WQMI-S)

Fig. 5: 2d visuallization of source and target data in learned subspace using
t-SNE [20] for sub-problem A → W using two different methods (a) TJM
and (b)WQMI-S. Values of scatter metric G are also provided.

VI. CONCLUSION

We proposed a subspace learning framework for domain
adaptation based on maximization of quadratic mutual infor-

mation between data and class labels. A generic formulation of
QMI is proposed incorporating soft-class labeling and instance
weights. Both source and target data are weighted based on
their underlying shared similarity. Source data that share little
similarity with target distribution are down-weighted to reduce
their impact on subspace learning. Through an iterative refine-
ment, the linear transformation to build a common subspace
is optimized with the use of relevant samples across domains.
An adaptive instance weighting model is provided to identify
such samples automatically. We propose an alternative strategy
to deal with model parameter setup without requiring labeled
data from target domain. In future, we plan to extend this work
for detection of novel category not present in training phase.
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