LDA/SVM Driven Nearest Neighbor Classification

Jing Peng Douglas R. Heisterkamp & H.K. Dai
Electrical Engr. & Computer Sci. Dept. Computer Science Dept.
Tulane University Oklahoma State University
New Orleans, LA 70118 Stillwater, OK 74078
jpQ@eecs.tulane.edu {doug,dai}@Qcs.okstate.edu
Abstract

Nearest neighbor classification relies on the assumption that class conditional
probabilities are locally constant. This assumption becomes false in high di-
mensions with finite samples due to the curse-of-dimensionality. The nearest
neighbor rule introduces severe bias under these conditions. We propose a lo-
cally adaptive neighborhood morphing classification method to try to minimize
bias. We use local support vector machine learning to estimate an effective
metric for producing neighborhoods that are elongated along less discriminant
feature dimensions and constricted along most discriminant ones. As a result,
the class conditional probabilities can be expected to be approximately constant
in the modified neighborhoods, whereby better classification performance can be
achieved. The efficacy of our method is validated and compared against other
competing techniques using a number of data sets.

Keywords: Classification, Nearest Neighbor, LDA, SVM

1 Introduction

In classification, a feature vector x = (1, -, z,)" € R", representing an object, is assumed
to be in one of J classes {i};_,, and the objective is to build classifier machines that assign

x to the correct class from a given set of [training samples.

A simple and attractive approach to this problem is the K nearest neighbor (NN) classifi-
cation method [4, 6, 10, 11, 13, 16, 18]. Such a method produces continuous and overlapping,
rather than fixed, neighborhoods and uses a different neighborhood for each individual query
so that all points in the neighborhood are close to the query, to the extent possible. Fur-

thermore, empirical evaluation to date shows that the KNN rule is a rather robust method.

1

In addition, it has been shown [7, 9] that the INN rule has asymptotic error rate that is at

most twice the Bayes error rate, independent of the distance metric used.

C

Figure 1: Feature relevance varies with query locations.

The nearest neighbor rule becomes less appealing in finite training samples, however.
This is due to the curse-of-dimensionality [3]. Severe bias can be introduced in the NN rule
in a high dimensional input feature space with finite samples. As such, the choice of a distance
measure becomes crucial in determining the outcome of nearest neighbor classification. The
commonly used Euclidean distance measure, while simple computationally, implies that the
input space is isotropic. However, the assumption for isotropy is often invalid and generally
undesirable in many practical applications. Figure 1 illustrates a case in point, where class
boundaries are parallel to the coordinate axes. For query a, the vertical coordinate is more
relevant, because a slight move along the that axis may change the class label, while for query
b, the horizontal coordinate is more relevant. For query c, however, both coordinates are
equally relevant. This implies that distance computation does not vary with equal strength
or in the same proportion in all directions in the feature space emanating from the input
query. Capturing such information, therefore, is of great importance to any classification

procedure in high dimensional settings.

In this paper we propose an adaptive neighborhood morphing classification method to
try to minimize bias in high dimensions. We estimate an effective local metric for computing
neighborhoods based on local Support Vector Machines (SVMs), which have been success-
fully used as a classification tool in a number of areas, ranging from object recognition to
classification of cancer morphologies. The resulting neighborhoods are highly adaptive to
query locations. Moreover, the neighborhoods are elongated along less relevant (discrimi-
nant) feature dimensions and constricted along most influential ones. As a result, the class
conditional probabilities tend to be constant in the modified neighborhoods, whereby better

classification performance can be obtained.

The rest of the paper is organized as follows. Section 2 describes related work addressing
issues of feature relevance computation and nearest neighbor classification. Section 3 presents
our approach to measuring local feature relevance based on linear discriminant analysis
and support vector machines. Section 4 describes our neighborhood morphing procedure
based on local feature relevance. After that, we present in Section 5 experimental results
demonstrating the efficacy of our technique using a number of real-world data. Finally,
Section 6 concludes this paper by pointing out possible extensions to the current work and

future research directions.

2 Related Work

Friedman [10] describes an approach to learning local feature relevance that recursively
homes in on a query along the most (locally) relevant dimension, where local relevance is
computed from a reduction in prediction error given the query’s value along that dimension.
This method performs well on a number of classification tasks. In our notations, the local

relevance of ith coordinate/feature axis can be described by
J

Ri(z) = >_(Pr(j) — Pr(jlz: = z)])%, (1)
7j=1
where Pr(j) represents the expected value of Pr(j|x), and Pr(j|z; = z;) the conditional

expectation of Pr(j|x), given that z; assumes value z;. This measure reflects the influence

3

of the ith input variable on the variation of Pr(j|x) at the particular point z = z. In this

case, the most informative dimension is the one that deviates the most from Pr(j).

In contrast, we measure feature relevance (section 3.2) based on discriminant analysis.
We say a feature dimension is more relevant if it provides more class discriminanting infor-
mation, whereby a large weight can be associated with that dimension. As a result, our

relevance measure is more discriminant than Friedman’s.

Hastie and Tibshirani [11] propose an adaptive nearest neighbor classification method
based on linear discriminant analysis (LDA). The method computes a distance metric as a
product of properly weighted within and between sum-of-squares matrices. They show that
the resulting metric approximates the chi-squared distance by a Taylor series expansion,
given that class densities are Gaussian and have the same covariance matrix. While sound
in theory, the method has limitations. The main concern is that in high dimensions we may

never have sufficient data to locally fill in n X n within and between sum-of-squares matrices.

Amari and Wu [1] describe a method for improving SVM performance by increasing
spatial resolution around the decision boundary surface based on the Riemannian geome-
try. The method first trains a SVM with an initial kernel that is then modified from the
resulting set of support vectors and a qausiconformal mapping. A new SVM is built using
the new kernel. Viewed under the same light, our technique can be regarded as a way to in-
crease spatial resolution around the separating hyperplane in a local fashion. However, our
technique varies spatial resolution judiciously in that it increases spatial resolution along

discriminanting directions, while decreasing spatial resolution along less discriminant ones.

Weston et al. [20] propose a technique for feature selection for SVMs to improve general-
ization performance. In their technique, a feature is either completely relevant or completely
irrelevant. Clearly, feature importance as such is non-local, and therefore, insensitive to
query locations. In addition, these global relevance techniques usually do not work well on
tasks that exhibit local feature differential relevance, as evidenced by the example shown in

Figure 1.

3 Feature Relevance

Our technique is motivated as follows. In linear discriminant analysis (for J = 2), data are
projected onto a single dimension where class label assignment is made for a given input

query. From a set of training data
{xi, yz}ll

where y; € {0,1}, this dimension is computed according to
W = Wil()i(l —)22) (2)

where

1
W=> > pilxi —%)(x; — %;)' (3)

J=0yi=j
denotes the within sum-of-squares matrix, X; the class means, and p; the relative occurrence

of x; in class j. The vector w = (wy,ws,...,w,)" represents the same direction as the
discriminant in the Bayes classifier along which the data has the maximum separation.
Furthermore, any direction, ®, whose dot product with w is large, also carries discriminant
information. The larger |w- @] is, the more discriminant information that ® captures. State

it differently, if we transform © via
© =W12@, (4)

then in the transformed space, any direction © close to W—1/2(X; — X5) carries discriminant

information. More formally, let
w'Bw

wWw’

J(w) =

(5)
be the LDA criterion function maximized by w (2), where B is the between sum-of-squares

matrix and computed according to
B - ()21 - iz)(il - ig)t. (6)

If we let
B* = W /2BW /2 (7)

be the between sum-of-squares matrix in the transformed space, then the criterion function

(5) in the transformed space becomes

- O'B*O
7©) = 28

where
ﬁ/ = W71/2()7(1 - RQ)
and © by (4). Therefore, any direction © that is close to W~1/2(X; —X;) in the transformed

space computes higher values in J*, thereby capturing discriminant information.

In particular, when O is restricted to the feature axes, i.e.,
© c{ey, --,e,}, 9)

where e; is a unit vector along the ith feature, the value of |w - ©|, which is the magnitude
of the projection of w along ©, measures the degree of relevance of feature dimension ® in
providing class discriminant information. It thus seems natural to associate, when © = e;
(hence |w - O] = w;),

(10)

T, =

as a weight, with each dimension ® in a weighted nearest neighbor rule

n
D(x,y) = erz(xz — ;)2 (11)
i=1
Now imagine for each input query we compute w locally, from which to induce a new
neighborhood for the final classification of the query. In this case, large |w - ©®| forces the
shape of neighborhood to constrict along ©®, while small |w - ®| enlongates the neighborhood
along the © direction. Figure 1 illustrates a case in point, where for query a the discriminant

direction is parallel to the vertical axis, and as such, the shape of the neighborhood is

squashed along that direction and enlongated along the horizontal axis.

We use two-dimensional Gaussian data with two classes and substantial correlation,

shown in Figure 2, to illustrate neighborhood computation based on LDA. The number of

6

0.5 ¢ Class2 -]
1 '‘Query’ ©
-15 ¢ .

* +
- - s _
2 + +H
+ +;¢$&
25 ¢ Rt s o 1
T e Ty
E i N
R =
+ e d e w0 P
3 r PR T e 8
. ot +#¢+++ S tjﬁni
N +++‘iﬁ & it
-35 ¢ et A 8
' + [*
L] # +
+++++ Tty o+ 4
-4 - + N _
+ T+ N
_4 5 1 1 1 1 1 1 +| 1

05 1 15 2 25 3 35 4 45 5

Figure 2: Two-dimensional Gaussian data with two classes and substantial correlation. The
(red) square indicates the query.

data points for both classes is roughly the same (about 250). The (red) square, located at
(3.7, —2.9), represents the query. Figure 3(a) shows the 100 nearest neighbors (red squares) of
the query found by the unweighted KNN method (simple Euclidean distance). The resulting
shape of the neighborhood is circular, as expected. In contrast, Figure 3(b) shows the 100
nearest neighbors of the query, computed by the technique described above. That is, the
nearest neighbors shown in Figure 3(a) are used to compute (2) and, hence, (10) and (11),
with estimated new (normalized) weights: r; = 0.3 and ro = 0.7. As a result, the new
(elliptical) neighborhood is elongated along the horizontal axis (the less important one) and
constricted along the vertical axis (the more important one). The effect is that there is a

sharp increase in the retrieved nearest neighbors that are in the same class as the query.

This example demonstrates that even a simple problem in which a linear boundary
roughly separates two classes can benefit from the feature relevance learning technique just
described, especially when the query approaches the class boundary. It is important to

note that for a given distance metric the shape of a neighborhood is fixed, independent of

query locations. Furthermore, any distance calculation with equal contribution from each
feature variable will always produce spherical neighborhoods. Only by capturing the relevant
contribution of the feature variables can a desired neighborhood be realized that is highly

customized to query locations.

0 T T T T T T T T 0 T T T T T T T T
0.5 1 Class2 + 1 0.5 1 Class2 +
NNs =© NNs o
1t] 1t]
15 |] 15 |]
2+t 1 1 2L 1 i
2.5 1 2.5 1
_3 L 4 _3 L i
-35 R -35 R
4t a4t
45 L L 45 L L
05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 45 5

(a) (b)

Figure 3: Effect of feature relevance learning on neighborhood shapes. (a) Circular neighbor-
hood (Euclidean distance). (b) Elliptical neighborhood, where features are weighted from
LDA.

While w points to a direction along which projected data can be well separated, the
corresponding hyperplane may be far from optimal with respect to margin maximization.
In general, such a hyperplane does not yield the maximum margin of separation between
the data, which has direct bearing on its generalization performance. In terms of weighted
nearest neighbor computation discussed above, this implies that the class (conditional) prob-
ability tends to vary in the neighborhood induced by w. Furthermore, the assumption on
equal covariance structures for all classes is often invalid in practice. Computationally, if the
dimension of the feature space is large, there will be insufficient data to locally estimate the
Q(n?) elements of the within sum-of-squares matrices, thereby making them highly biased.
Moreover, in high dimensions the within sum-of-squares matrices tend to be ill-conditioned.

In such situations, one must decide at what threshold to zero small singular values in order

8

to obtain better solutions. In addition, very often features tend to be independent locally.
Without local clustering weighting based on local LDA will be less effective, as we shall see

later. This motivates us to consider the SVM approach to feature relevance estimation.

3.1 Support Vector Machines

Let
1
Rw) = [Sly = f(x,w)|dP(x.y) (12)
be the expected generalization error (risk) for a learning machine f(x,w), where w is an

adjustable parameter that determines f, and P(x,y) the (unknown) probability distribution

[19]. The empirical risk is defined as

Ran (%) = 51 3 = f o) (13)

for a set of training data

{Xi, yz'}é:r (14)

In the SVM framework, unlike typical classification methods that simply minimize

Remp(w), SVMs minimize the following upper bound of the expected generalization error

R(wW) < Repp(w) + C(h), (15)

M

where C represents the “VC confidence,” and h the VC dimension. This can be accomplished
by maximizing the margin between the separating plane and the data, which can be viewed

as realizing the Structure Risk Minimization principle [19].

Now we examine general SVMs having basis functions ® : £* — RY, where n < N.

SV Ms search for a linear function
fX)=w-®(x)+b (16)

in space RY. An input query x is classified according to the algebraic sign of f(x). The SVM

solution produces a hyerplane having the maximum margin, where the margin is defined as

2/||lw||. It is shown [19] that this hyperplane is optimum with respect to the maximum

margin. The hyperplane, determined by its normal vector ||w||, can be explicitly written as

W = Z ayi®(x;), (17)

1€SV

where «;’s are Langrange coefficients that maximize
1
Lp =2 i — 5> oiayiy; (%) - 2(x;) (18)
1 1,J

and SV is the set of support vectors determined by the SVM.

Figure 4: Separating hyperplane and its norm.

In a simple case in which ® is the identity function on R"

o(x) = x, (19)
we have
fx)=w-x+b (20)
and
w = Z 0 YiX;. (21)
ieSV

Here the normal w is perpendicular to the separating hyperplane. Similar to linear discrim-
inant analysis, the normal w points to the direction that is more discriminant and yields the

maximum margin of separation between the data. This situation is illustrated in Figure 4.

10

When dealing with non-separable data, the algorithm using the identity mapping (19)
cannot find feasible solutions. To construct the optimal margin hyperplane when the data
are non-separable, positive slack variables & > 0 are introduced and the primal problem

becomes minimizing
1
SIwlP + (3 &) (22
i
subject to

yi(xi-w+b) > 1§ (23)

where ¢ is a procedural parameter to be selected by the user [5]. It can be shown that the

dual problem (18) remains the same but now subject to

0<a;<ec (24)

The solution is again given by (21). Solving separable data in the feature space is called hard

margin SVMs, while solving non-separable data in the feature space is called soft margin

SVMs.

Let us revisit the normal computed by LDA (2). This normal is optimal (the same
Bayes discriminant) under the assumption that the two classes follow the same distribution.
Optimality breaks down, however, when the assumption is violated, which is often the case
in practice. In contrast, SVMs compute the optimal (maximum margin) hyperplane (17)
without such an assumption. This spells out the difference between the directions pointed to
by the two normals, which has important implications on generalization performance. Figure
5 illustrates a case in point. Here we have two-dimensional data with two classes that follow
different Gaussian distributions. Each class has 100 data points. The two lines represent the
hyperplanes computed by LDA and a soft margin SVM, respectively. In this simple example,
the SVM hyperplane has a better separation of the data than the LDA hyperplane. In fact,
the SVM linear classifier has an error rate of 3.3% while the LDA classifier has an error rate

of 3.7% over 2000 independently generated test points.

Finally, we note that real data are often highly non-linear. In such situations, linear

machines cannot be expected to work well. As such, w is unlikely to provide any useful

11

LDA -~
0+t SVM .
1k .od
. vy
-2+ +, o+t ++H:++ ++++*++ L i
+ *or +t:r ﬁ_}ﬁ#i# i
_3 L + o ;5%:# IJ’J +:+ .
o ‘k‘\::t*’ 4 + ' *
+ N
-4 - + 4
+
5t]
6 |]
-7+ -
_8 1 1 1 1 1
1 2 3 4 5 6 7

Figure 5: Two-dimensional data with two classes having different Gaussian distributions.
Two lines indicate the hyperplanes computed by LDA and SVMs, respectively.

discriminant information. On the other hand, piecewise local hyperplanes can approximate

any decision boundaries, thereby enabling w to capture local discriminant information.

3.2 Discriminant Feature Relevance

Based on the above discussion, we now propose a measure of feature relevance for an input
query Xg as

Ti(xo) = |wil (25)

where w; denotes the ith component of w in (21) computed locally at x,. One attrac-
tive property of (25) is that w enables Y,’s to capture relevance information that may not
otherwise be attainable should relevance estimates been conducted along each individual

dimension one at a time, as in [8, 10].

The relative relevance, as a weighting scheme, can then be given by
n

ri(xo) = (Ti(x0))"/ _(T;(x0))"- (26)

=1

12

where ¢t = 1,2, giving rise to linear and quadratic weightings, respectively. In this paper we
employ the following exponential weighting scheme
n
ri(%o) = exp(CY4(xo))/ _ZleXp(CTj(Xo)) (27)
j=
where C' is a parameter that can be chosen to maximize (minimize) the influence of Y;
on ;. When C = 0 we have r; = 1/n, thereby ignoring any difference between the T,’s.
On the other hand, when C is large a change in Y; will be exponentially reflected in r;.
The exponential weighting is more sensitive to changes in local feature relevance (25) and
gives rise to better performance improvement. Moreover, exponential weighting is more
stable because it prevents neighborhoods from extending infinitely in any direction, i.e., zero
weight. This, however, can occur when either linear or quadratic weighting is used. Thus,

(27) can be used as weights associated with features for weighted distance computation

n
D(X, Y) = JZH(% - yi)Q- (28)
i=1
These weights enable the neighborhood to elongate along feature dimensions that run more
or less parallel to the separating hyperplane, and, at the same time, to constrict along feature

coordinates that have small angles with w. This can be considered highly desirable in nearest
neighbor search. Note that the technique is query-based because weightings depend on the
query [2].

We desire that the parameter C in (27) increases with decreasing perpendicular distance
between the input query and the decision boundary in an adaptive fashion. The advantage of
doing so is that any difference among w;’s will be magnified exponentially in r, thereby mak-
ing the neighborhood highly elliptical as the input query approaches the decision boundary.

Figure 6 illustrates this situation.

In general, however, the boundary is unknown. By using the knowledge that Equation
(20) computes an approximate locally linear boundary, we can potentially solve the problem
by computing the following:

|w-x+b|. (29)

13

Hyperplane

Y1)

Figure 6: Neighborhood changes with decreasing distance between the query and the decision
boundary.

After normalizing w to unit length, the above equation returns the perpendicular distance
between x and the local separating hyperplance. We can set C' to be inversely proportional
to

= [w-x+ 0. (30)

In practice, we find it more effective to set C to a fixed constant. In the experiments reported

here, C' is determined through cross-validation.

Instead of axis parallel elongation and constriction, one attempts to use general Maha-
lanobis distance and have an ellipsoid whose main axis is parallel to the separating hyper-
plane, and whose width in other dimensions is determined by the distance of x from the
hyperplane. The main concern with such an approach is that in high dimensions there may
not be sufficient data to locally fill in n X n within sum-of-squares matrices. Moreover, very
often features may be locally independent. Therefore, to effectively compute general Maha-
lanobis distance some sort of local clustering has to be done. In such situations, without

local clustering, general Mahalanobis distance reduces to weighted Euclidean distance.

Let us examine the relevance measure (25) in the context of the Riemannian geometry
proposed by Amari and Wu [1]. A large component of w along a direction ©, i.e., a large value
of ®-w, implies that data points along that direction become far apart in terms of Equation

(28). Likewise, data points are moving closer to each other along directions that have a

14

small dot product with w. That is, (25) and (28) can be viewed as approximating a local
qausiconformal transformation around the separating boundary surface. This transformation
is more judicious than that proposed by Amari and Wu [1], because this local mapping
increases spatial resolution along discriminant directions around the separating boundary.
In contrast, the qausiconformal mapping introduced by Amari and Wu [1] does not attend

to directions.

4 Neighborhood Morphing Algorithm

The neighborhood morphing nearest neighbor algorithm (MORF) has three adjustable pro-
cedural (meta-)parameters: K: the number of nearest neighbors in the final nearest neighbor
rule; K: the number of nearest neighbors in the neighborhood Nk, for local SVM compu-

tation; and C: the positive factor for the exponential weighting scheme (27).

We note that the parameter K is common to all nearest neighbor rules. Our algorithm
however has added two new parameters. Arguably, there is no strong theoretic foundation
upon which to determine their selection. The value of K, should be a reasonable number to
support local SVM computation. To be consistent, K has to be a diminishing fraction of
[, the number of training points. The value of C should increase as the input query moves
close to the decision boundary, so that highly stretched neighborhoods will result. We have
empirically tested different ranges of values. Alternatively, cross validation can be used to
choose best values for these parameters, which is what we do in the examples in the next

section.

At the beginning, a nearest neighborhood of Ky points around the query x, is computed
using the simple Euclidean distance. From these K points a local linear SVM is built
(i.e., the mapping from the input space to the feature space is the identity mapping (19)),
whose w (normal to the separating hyperplance) is employed in (25) and (27) to obtain an
exponential feature weighting scheme r;. Finally, the resulting r; (27) are used in (28) to

compute K nearest neighbors at the query point xq to classify xy. An outline of the MORF

15

algorithm is shown in Figure 7.

The bulk of the computational cost associated with the MORF algorithm is incurred by
solving the quadratic programming problem to obtain local linear SVMs. This optimization
problem can be bounded by O(nK?%) citeburges. Note that throughout computation K7,
remains fixed and is (usually) less than or equal to half the number of training points (1).
For large but practical n, K can be viewed as a constant. While there is a cost associated
with building local linear SVMs, the gain in performance over simple KNN outweighs this

extra cost, as we shall see in the next section.

Given a query point xg, and procedural parameters K, K and C"
1. Initialize r in (28) to 1;
2. Compute the Ky, nearest neighbors around x, using the weighted distance metric (28);
3. Build a local linear SVM from the K, neighbors.
4. Update r according to (21) and (27).

5. At completion, use r, hence (28), for K-nearest neighbor classification at the test point

Xp-

Figure 7: The MORF algorithm

5 Empirical Evaluation

In the following we compare several competing classification methods using a number of data

sets:

e MORF - boundary adjusted local metric method described above, coupled with the
exponential weighting scheme (27); SVMlight [12] was used to build local SVMs.

e LDAW - locally weighted Euclidean metric coupled with the exponential weighting

16

scheme (27). For each input query, we first use K nearest neighbors to the query to
compute (3), i.e.,

W=3 > pilxi—%)(xi — %), (31)
from which to compute

W = W_l()_cl —)_(2).

In case W is singular, we compute the pseudo-inverse of W by

A1 0
Wt=V % (32)
0 O
where A = diag(o1,09,---,0,). In case W is ill-conditioned, we set a threshold to 0.05

to zero small singular values. We then normalize w using (27) to compute (11), from

which the final neighborhood for classification is obtained.
e SVM-R - SVM classifier using using radial basis kernels. Again we used SVMlight [12].
e KNN - simple K nearest neighbor method using the Euclidean distance.
e (4.5 - decision tree method [17].

e MACHETE - an adaptive NN procedure [10], in which the input variable used for

splitting at each step is the one that maximizes the estimated local relevance (1).

e SCYTHE - a generalization of the Machete algorithm [10], in which the input variables
influence each split in proportion to their estimated local relevance, rather than the

winner-take-all strategy of Machete.

e DANN - discriminant adaptive nearest neighbor classification [11].

In all the experiments, the features are first normalized over the training data to have
zero mean and unit variance, and the test data features are normalized using the correspond-

ing training mean and variance. Procedural parameters for each method were determined

17

empirically through cross-validation. Also, in all the experiments where SVMlight was in-
volved, we did not attempt to estimate optimal values for eps. We instead used its default

value (0.001). The values of v in the radial basis kernel

exp(—7|x —x'[|)

and ¢ (trade-off between training error and margin) that affect the performance of SVM-
R were chosen through cross-validation for each problem. Similarly, optimal procedural
parameters for each method are selected through experiments for each problem. For C4.5

we used default parameters.

5.1 The Problems

The first 9 data sets are taken from UCI Repository of Machine Learning Database (Merz
& Murphy, 1996). The last one is a simulated data set that is created according the given
distribution. For the first six examples we randomly split the data sets into 60% training and
40% testing. For the remaining four examples we first randomly select 200 points as training
data and then randomly select 200 from the remaining data as testing data. The average
error rates over 20 independent runs are reported in Table 1. The procedural parameters for

each method used for the data sets are listed in the Appendix.

1. Iris data (Iris). This data set consists of n = 4 measurements made on each of 100 iris
plants of J = 2 species. The two species are iris versicolor and iris virginica. The problem
is to classify each test point to its correct species based on the four measurements. The

average error rates are shown in the first row of Table 1.

2. Vote data (Vote). This data set includes votes for each of the U.S. House of Rep-
resentatives Congressmen on the 16 key votes identified by the CQA. The data set consists
of 232 instances after removing missing values, and two classes (democrat and republican).
The instances are represented by 16 Boolean valued features. The average error rates are

shown in the second row of Table 1.

18

3. Sonar data (Sonar). This data set consists of n = 60 frequency measurements made
on each of 208 data of J = 2 classes (“mines” and “rocks”). The problem is to classify each
test point in the 60-dimensional feature space to its correct class. The average error rates

are shown in the third column of Table 1.

4. Tonosphere data (Hon). The data consists of 34 electromagnetic features that are
used to determine “good” or “bad” (J = 2) radar returns characterizing evidence of some
type of structure in the ionosphere. The data set of 351 instances. Average error rates

computed are reported in the 4th row of Table 1.

5. Liver data (Liver). This example has n = 6 numerical attributes and J = 2 classes.
There are 345 samples in this example. The average error rates over 20 independent runs

are given in in the fifth row of Table 1.

6. Hepatitis data (Hep). The data set consists of 155 instances of 19 numerical features

and J = 2 classes. The average error rates are reported in the sixth row of Table 1.

7. Wisconsin breast cancer data (Cancer). The data consists of 9 medical input features
that are used to make a binary decision on the medical condition: determining whether the
cancer is malignant or benign. The data set consists of 683 instances after removing missing
values. The average error rates computed over all 2000 such classifications are reported in

the seventh row of Table 1.

8. Pima Indians Diabete data (Pima). This data set consists of n = 8 numerical
attributes measured for each of 768 samples of J = 2 classes. The problem is to classify
each test point in the 8-dimensional space to its correct class. The average error rates over

20 independent runs are given in in the eighth row of Table 1.

9. OQ data (OQ). This data set consists of n = 16 numerical attributes and J = 2
classes. The objective is to identify each of a large number of black-and-white rectangular
pixel displays as one of the two capital letters (O and Q) in the English alphabet (they
are randomly selected from 26 letter classes). Sample images are shown in Figure 8. There

are total 1536 instances in this data set. Letter images are represented by 16 numerical

19

O O O
DA Q

(d) (e) (f)
Figure 8: Sample letter images. First row: letter O. Second row: letter Q.

attributes (statistical moments and edge counts). The average error rates by each method

over 20 independent runs are shown in the nineth row of Table 1.

10. Unstructured with eight noise (Unstruct). This problem is taken from [11]. There
are n = 10 input features, and J = 2 classes. Each class contains six spherical bivariate
normal subclasses (in first two dimensions), having standard deviation 0.25. The rest of
eight feature dimensions follow independent standard Gaussian distributions. They serve as
noise. The means of the 12 subclasses are chosen at random without replacement from the
integers [1,2,...,5] x [1,2,...,5]. For each class, data are evenly drawn from each of the
six normal subclasses. The average error rates over 20 independent runs are reported in the

last row of Table 1.

5.2 Results

Table 1 shows clearly that MORF achieved the best or near best performance over the

ten data sets, followed by SVM-R. While performance improvement may not be significant

20

Table 1: Average classification error rates.

SVM-R | MORF | LDAW KNN DANN MACHETESCYTHE| C4.5

wlo|lplo|ul o 1 o | pulo|p o wl o | pulo
Iris | 4.9 3.11/4.6|2.88/ 5.4 | 2.88 | 4.9 |3.58| 6.4 [3.83/6.0| 4.21 [4.8/2.95]| 8.3 |3.54

Vote | 3.7 (1.783.5|1.96| 7.6 |3.79| 8.4 |2.35| 3.9 |1.90{5.4| 2.12 |5.4|1.65| 3.5 [1.60

Sonar |14.4|5.06|13.4/4.24/16.0| 3.42 | 16.0 | 3.44 |12.9/4.02|21.0] 3.81 |18.0]3.87|30.1|4.69

Ion |5.4|0.96|7.2]1.98/11.4]2.82(12.59|2.24|10.4|2.48/11.5| 2.29 |(13.5/2.54|10.7|2.60

Liver |28.0(2.46|30.3(2.63|36.3|4.46 | 36.4 |33.96/32.6 [4.3636.1| 3.02 |36.8/4.53 |37.6|3.12

Hep |15.2|3.93(14.5(3.95|14.4|4.13 | 14.8 | 4.80 [13.6|3.90|17.4| 4.35 |16.9/4.13|19.6/4.21

Cancer |2.98(0.62/2.910.89/3.2|0.89| 3.1 [0.91|2.8|0.78/3.6| 1.04 |3.2{0.95| 4.0 |1.31

Pima [23.5]2.41|24.62.57)26.6| 2.91 | 27.1 | 3.35(26.4|2.4725.7| 3.00 |25.7|3.00|19.1|1.33

0Q [3.1]1.35/4.3|2.11/6.1|2.16| 6.4 [2.04| 4.5 |1.88/8.0] 1.69 |6.3|2.01| 3.5 |0.81

Unstruct|29.6|2.70,7.0(5.9226.111.78] 34.0 | 3.56 | 30.0(3.39/9.0 | 2.25 |(13.6|3.07|10.1|7.40

in many cases, the results nonetheless indicate the pratical potential of MORF over other

competing methods.

Clearly each method works well on some problems, while not on others. Therefore, it
seems natural to ask the question of robustness. That is, how well a particular method m
performs on average in situations that are most favorable to other algorithms. Following
[10], we capture robustness by computing the ratio by, of its error rate e,, and the smallest

error rate over all methods being compared in a particular example:

b, =™

minlgkgg €L ’
Thus, the best method m* for that example has b,,- = 1, and all other methods have larger
values b,, > 1, for m # m*. The larger the value of b,,, the worse the performance of the mth

method is in relation to the best one for that example, among the methods being compared.

21

The distribution of the b, values for each method m over all the problems, therefore, seems

to be a good indicator of robustness.

3

- i
—_— .
=
3

=2
Z
N4

DANN }'ll

MORF

=
SCYTHE HH
o Nl

SVM-R

MACHETE

Figure 9: Performance distributions.

Fig. 9 plots the distribution of b, for each method over the ten data sets. The dark
area represents the lower and upper quartiles of the distribution that are separated by the
median. The outer vertical lines show the entire range of values for the distribution. It is
clear that the most robust method over the data sets is MORF. In 3/10 of the problems its
error rate was the best (median = 1.07). In 8/10 of them it was no worse than 30% higher
than the best error rate. In the worst case it was 40%. In contrast, KNN has the worst

distribution, where the corresponding numbers are 1.42, 234% and 488%.

6 Summary and Conclusions

This paper presents an adaptive metric method for effective pattern classification. This
method estimates a flexible metric for producing neighborhoods that are elongated along
less relevant feature dimensions and constricted along most influential ones. As a result, the
class conditional probabilities tend to be more homogeneous in the modified neighborhoods.

The experimental results show clearly that the MORF algorithm can potentially improve

22

the performance of KNN and recursive partitioning methods in some classification problems,
especially when the relative influence of input features changes with the location of the query
to be classified in the input feature space. The results are also in favor of MORF over similar

competing methods such as Machete and DANN.

Appendix A. Procedural Parameters for Each Method
Used for the Data Sets

1. Iris data. Parameters: SVM-R(y = 0.08,¢ = 2), MORF(K = 11,K;, = 12,C =
10,¢ = 1), LDAW(K = 9,K; = 30,C = 1), KNN(K = 9), DANN(K = 5,K; = 40),
MACHETE(K = 5,L = 20, L' = 15,7 = 0.96), and SCYTHE(K = 5,L = 20,L' = 15,7 =
0.96).

2. Vote data. Parameters: SVM-R(y = 0.008,¢ = 4.5), MORF(K = 39,K, = 75,C =
15,¢ = 0.1), LDAW(K = 3,K; = 104,C = 24), KNN(K = 5), DANN(K = 5, K; = 90),
MACHETE(K = 7,L = 30,1/ = 15,7 = 0.84), and SCYTHE(K = 5,L = 32, L' = 15,7 =
0.84).

3. Sonar data. Parameters: SVM-R(y = 0.02,¢ = 3.5), MORF(K = 1,K; = 90,C =
20, ¢ = 0.005), LDAW (K = 1, K, = 110,C = 24), KNN(K = 1), DANN(K = 9, K}, = 34),
MACHETE(K = 1,L = 24,1’ = 14,7 = 0.8), and SCYTHE(K = 1,L = 30, L' = 14,7 =
0.85).

4. Tonosphere data. Parameters: SVM-R(y = 0.05,¢ = 5), MORF(K = 3, K = 104,C =
31.5,c = 0.03), LDAW(K = 1, K; = 139,C = 20), KNN(K = 1), DANN(K = 3, K, = 97),
MACHETE(K = 3,L = 29, ' = 13,r = 0.82), and SCYTHE(K = 1,L = 46,L' = 19,7 =
0.66).

5. Liver data. Parameters: SVM-R(y = 0.05,¢=7), MORF(K =25, K;, =111,C = 2,¢c =
1.95), LDAW(K = 19,K; = 190,C = 5), KNN(K = 15), DANN(K = 13, K, = 143),
MACHETE(K = 1,L = 63,1’ = 36,7 = 0.8), and SCYTHE(K = 1,L = 46, L' = 20,7 =

23

0.85).

6. Hepatitis data. Parameters: SVM-R(y = 0.1,¢ = 5), MORF(K = 9,K; = 31,C =
4.1,¢ = 0.001), LDAW(K = 3, K, = 60,C = 3), KNN(K = 3), DANN(K = 19, K, = 67),
MACHETE(K = 5,L = 25,1 = 14,7 = 0.97), and SCYTHE(K = 7,L = 25, L' = 14,1 =
0.99).

7. Wisconsin breast cancer data. Parameters: SVM-R(y = 0.009,¢ = 2), MORF(K =
7,K; =4,C = 1,c = 1.6), LDAW(K = 7,K; = 165,C = 1), KNN(K = 7), DANN(K =
9, K;, = 160), MACHETE(K = 7,L = 25,L' = 14,7 = 0.95), and SCYTHE(K = 7,L =
82, I/ = 43,7 = 0.99).

8. Pima Indians Diabete data. Parameters: SVM-R(y = 0.007,¢ = 6), MORF(K =
23, K; = 162,C = 2.77,¢ = 0.5), LDAW(K = 17,K; = 166,C = 3), KNN(K = 17),
DANN(K = 13, K}, = 53), MACHETE(K = 17, L = 85, L' = 40, = 0.7), and SCYTHE(K =
9,L =76,L' =37,r = 0.61).

9. OQ data. Parameters: SVM-R(y = 0.1,¢ = 6), MORF(K = 1,K; = 50,C = 3.8,¢c =
0.28), LDAW(K = 1,K; = 61,C = 8), KNN(K = 1), DANN(K = 9,K; = 117),
MACHETE(K = 5,L = 29,1’ = 14,7 = 0.98), and SCYTHE(K = 1,L = 32,/ = 17,r =
0.77).

10. Unstructured with eight noise. Parameters: SVM-R(y = 0.09,¢ = 11), MORF(K =
3, K, =173,C =9,c=4),LDAW(K =11, K, = 188,C = 101), KNN(K = 5), DANN(K =
1,K; = 20), MACHETE(K = 1,L = 68,L' = 34,7 = 0.6), and SCYTHE(K = 9,L =
80, L' = 25,r = 0.55).

References

[1] S. Amari & S. Wu, “Improving support vector machine classifiers by modifying kernel

functions,” Neural Networks, 12, 783-789, 1999.

24

[2] C. Atkeson, A.W. Moore, & S. Schaal, “Locally weighted learning,” Al Review, 11,
11-73, 1997.

[3] R.E. Bellman, Adaptive control processes. Princeton Univ. Press, 1961.

[4] L. Bottou & V. Vapnik, “Local learning algorithms,” Neural Computation, 4(6), 838-
900, 1992.

[5] C.J.C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data
Mining and Knowledge Discovery, 2, 121-167, 1998.

.S. Cleveland and S.J. Devlin, “Locally Weighted Regression: An Approach to Re-
6] W.S. Cleveland and S.J. Devlin, “Locally Weighted R i An A h to R,
gression Analysis by Local Fitting,” J. Amer. Statist. Assoc. 83, 596-610, 1988

[7] T.M. Cover and P.E. Hart, “Nearest Neighbor Pattern Classification,” IEEE Trans. on
Information Theory, pp. 21-27, 1967.

[8] C. Domeniconi, J. Peng and D. Gunopulos, “An adaptive metric machine for pattern

classification,” Advances in Neural Information Processing Systems, 2000.

[9] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis. John Wiley &
Sons, Inc., 1973.

[10] J.H. Friedman “Flexible Metric Nearest Neighbor Classification,” Tech. Report, Dept.
of Statistics, Stanford University, 1994.

[11] T. Hastie and R. Tibshirani, ” Discriminant Adaptive Nearest Neighbor Classification”,
IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 18, No. 6, pp. 607-615,
1996.

[12] T. Joachims, “Making large-scale SVM learning practical,” Advances in Kernel Methods
- Support Vector Learning, B. Schvlkopf and C. Burges and A. Smola (ed.), MIT-Press,

1999. http://www-ai.informatik.uni-dortmund.de/throsten/svm_ light.html.

25

[13] D.G. Lowe, “Similarity Metric Learning for a Variable-Kernel Classifier,” Neural Com-
putation 7(1):72-85, 1995.

[14] G.J. Mclachlan, Discriminant Analysis and Statistical Pattern Recognition. New York:
Wiley, 1992.

[15] C. Merz and P. Murphy, UCI repository of machine learning databases.

http://www.ics.uci.edu/mlearn/MLRepository.html.

[16] J.P. Myles and D.J. Hand, “The Multi-Class Metric Problem in Nearest Neighbor Dis-
crimination Rules,” Pattern Recognition, Vol. 23, pp. 1291-1297, 1990.

[17] J.R. Quinlin, C4.5: Programs for Machine Learning. Morgan-Kaufmann Publishers,
Inc., 1993.

[18] R.D. Short and K. Fukunaga, “Optimal Distance Measure for Nearest Neighbor Clas-
sification,” IEEE Transactions on Information Theory, Vol. 27, pp. 622-627, 1981.

[19] V. Vapnik, Statistical Learning Theory, Wiley & Sons, Inc., 1998.

[20] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, & V. Vapnik, “Feature

selection for SVMs,” Advances in Neural Information Processing Systems, 2000.

26

